select.features {mixKernel} | R Documentation |
Select important features
Description
Select features using supervised or unsupervised kernel method. A
supervised feature selection method is performed if Y
is provided.
Usage
## S3 method for class 'features'
select(
X,
Y = NULL,
kx.func = c("linear", "gaussian.radial.basis", "bray"),
ky.func = c("linear", "gaussian.radial.basis"),
keepX = NULL,
method = c("kernel", "kpca", "graph"),
lambda = NULL,
n_components = 2,
Lg = NULL,
mu = 1,
max_iter = 100,
nstep = 50,
...
)
Arguments
X |
a numeric matrix (or data frame) used to select variables.
|
Y |
a numeric matrix (or data frame) used to select variables.
|
kx.func |
the kernel function name to use on |
ky.func |
the kernel function name to use on |
keepX |
the number of variables to select. |
method |
the method to use. Either an unsupervised variable selection
method ( |
lambda |
the penalization parameter that controls the trade-off between the minimization of the distorsion and the sparsity of the solution parameter. |
n_components |
how many principal components should be used with method
|
Lg |
the Laplacian matrix of the graph representing relations between
the input dataset variables. Required with method |
mu |
the penalization parameter that controls the trade-off between the
the distorsion and the influence of the graph. Default: |
max_iter |
the maximum number of iterations. Default: |
nstep |
the number of values used for the regularization path. Default:
|
... |
the kernel function arguments. In particular,
|
Value
ukfs
returns a vector of sorted selected features indexes.
Author(s)
Celine Brouard <celine.brouard@inrae.fr> Jerome Mariette <jerome.mariette@inrae.fr> Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>
References
Brouard C., Mariette J., Flamary R. and Vialaneix N. (2022). Feature selection for kernel methods in systems biology. NAR Genomics and Bioinformatics, 4(1), lqac014. DOI: doi:10.1093/nargab/lqac014.
See Also
Examples
## These examples require the installation of python modules
## See installation instruction at: http://mixkernel.clementine.wf
data("Koren.16S")
## Not run:
sf.res <- select.features(Koren.16S$data.raw, kx.func = "bray", lambda = 1,
keepX = 40, nstep = 1)
colnames(Koren.16S$data.raw)[sf.res]
## End(Not run)
data("nutrimouse")
## Not run:
grb.func <- "gaussian.radial.basis"
genes <- center.scale(nutrimouse$gene)
lipids <- center.scale(nutrimouse$lipid)
sf.res <- select.features(genes, lipids, kx.func = grb.func,
ky.func = grb.func, keepX = 40)
colnames(nutrimouse$gene)[sf.res]
## End(Not run)