plotVar.kernel.pca {mixKernel} | R Documentation |
Plot importance of variables in kernel PCA
Description
Provides a representation of variable importance in kernel PCA.
Usage
plotVar.kernel.pca(
object,
blocks = unique(object$cc.blocks),
ndisplay = 5,
ncol = 2,
...
)
Arguments
object |
: a kernel.pca object returned by |
blocks |
a numerical vector indicating the block variables to display. |
ndisplay |
integer. The number of important variables per blocks shown in
the representation. Default: |
ncol |
integer. Each block of variables is displayed in a separate
subfigure. |
... |
external arguments. |
Details
plotVar.kernel.pca
produces a barplot for each block. The variables for which the
importance has been computed with kernel.pca.permute
are
displayed. The representation is limited to the ndisplay
most important
variables.
Author(s)
Jerome Mariette <jerome.mariette@inrae.fr> Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>
References
Crone L. and Crosby D. (1995). Statistical applications of a metric on subspaces to satellite meteorology. Technometrics, 37(3), 324-328.
See Also
kernel.pca
, kernel.pca.permute
Examples
data(TARAoceans)
# compute one kernel for the psychem dataset
phychem.kernel <- compute.kernel(TARAoceans$phychem, kernel.func = "linear")
# perform a KPCA
kernel.pca.result <- kernel.pca(phychem.kernel)
# compute importance for all variables in this kernel
kernel.pca.result <- kernel.pca.permute(kernel.pca.result, phychem = colnames(TARAoceans$phychem))
## Not run: plotVar.kernel.pca(kernel.pca.result, ndisplay = 10)