| kernel.pca.permute {mixKernel} | R Documentation | 
Assess variable importance
Description
Assess importance of variables on a given PC component by computing the Crone-Crosby distance between original sample positions and sample positions obtained by a random permutation of the variables.
Usage
kernel.pca.permute(kpca.result, ncomp = 1, ..., directory = NULL)
Arguments
| kpca.result | a kernel.pca object returned by the
 | 
| ncomp | integer. Number of KPCA components used to compute the 
importance. Default:  | 
| ... | list of character vectors. The parameter name must be the kernel 
name to be considered for permutation of variables. Provided vectors length 
has to be equal to the number of variables of the input dataset. A kernel is 
performed on each unique variables values. Crone-Crosby distances are 
computed on each KPCA performed on resulted kernels or meta-kernels and can 
be displayed using the  | 
| directory | character. To limit computational burden, this argument allows to store / read temporary computed kernels. | 
Details
plotVar.kernel.pca produces a barplot for each block. The variables 
for which the importance has been computed with 
kernel.pca.permute are displayed. The representation is limited 
to the ndisplay most important variables.
Value
kernel.pca.permute returns a copy of the input 
kpca.result results and add values in the three entries: 
cc.distances, cc.variables and cc.blocks.
Author(s)
Jerome Mariette <jerome.mariette@inrae.fr> Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>
References
Mariette J. and Villa-Vialaneix N. (2018). Unsupervised multiple kernel learning for heterogeneous data integration. Bioinformatics, 34(6), 1009-1015. DOI: doi:10.1093/bioinformatics/btx682
Crone L. and Crosby D. (1995). Statistical applications of a metric on subspaces to satellite meteorology. Technometrics, 37(3), 324-328.
See Also
Examples
data(TARAoceans)
# compute one kernel for the psychem dataset
phychem.kernel <- compute.kernel(TARAoceans$phychem, kernel.func = "linear")
# perform a KPCA
kernel.pca.result <- kernel.pca(phychem.kernel)
# compute importance for all variables in this kernel
kernel.pca.result <- kernel.pca.permute(kernel.pca.result, 
                                        phychem = colnames(TARAoceans$phychem))