kernel.pca {mixKernel} | R Documentation |
Kernel Principal Components Analysis
Description
Performs a kernel PCA.
Usage
kernel.pca(K, ncomp = nrow(K$kernel))
Arguments
K |
a kernel object obtained using either |
ncomp |
integer. Indicates the number of components to return.. |
Value
kernel.pca
returns an object of classes "kernel.pca"
and "pca"
, which is a list containing the following entries:
ncomp |
: the number of principal components; |
X |
: the input kernel matrix; |
kernel |
: the input kernel object provided by the user; |
sdev |
: the singular values (square root of the eigenvalues); |
rotation |
: the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors); |
loadings |
: same as 'rotation' to keep the mixOmics spirit; |
x |
: same as 'rotation' to keep the mixOmics spirit; |
Author(s)
Jerome Mariette <jerome.mariette@inrae.fr> Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>
References
Scholkopf B., Smola A. and Muller K.R. (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299-1319.
See Also
compute.kernel
, combine.kernels
Examples
data(TARAoceans)
phychem.kernel <- compute.kernel(TARAoceans$phychem, kernel.func = "linear")
kernel.pca.result <- kernel.pca(phychem.kernel, ncomp = 3)