| combine.kernels {mixKernel} | R Documentation | 
Combine multiple kernels into a meta-kernel
Description
Compute multiple kernels into a single meta-kernel
Usage
combine.kernels(
  ...,
  scale = TRUE,
  method = c("full-UMKL", "STATIS-UMKL", "sparse-UMKL"),
  knn = 5,
  rho = 20
)
Arguments
| ... | list of kernels (called 'blocks') computed on different datasets and measured on the same samples. | 
| scale | boleean. If  | 
| method | character. Which method should be used to compute the 
meta-kernel. Default:  | 
| knn | integer. If  | 
| rho | integer. Parameters for the augmented Lagrangian method. Default: 
 | 
Details
The arguments method allows to specify the Unsupervised Multiple
Kernel Learning (UMKL) method to use: 
-  "STATIS-UMKL": combines input kernels into the best consensus of all kernels;
-  "full-UMKL": computes a kernel that minimizes the distortion between the meta-kernel and the k-NN graphs obtained from all input kernels;
-  "sparse-UMKL": a sparse variant of the"full-UMKL"approach.
Value
combine.kernels returns an object of classes "kernel" 
and "metaKernel", a list that contains the following components: 
| kernel | : the computed meta-kernel matrix; | 
| X | : the dataset from which the kernel has been computed, as given by
the function  | 
| weights | : a vector containing the weights used to combine the kernels. | 
Author(s)
Jerome Mariette <jerome.mariette@inrae.fr> Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>
References
Mariette J. and Villa-Vialaneix N. (2018). Unsupervised multiple kernel learning for heterogeneous data integration . Bioinformatics, 34(6), 1009-1015. DOI: doi:10.1093/bioinformatics/btx682.
See Also
Examples
data(TARAoceans)
# compute one kernel per dataset
phychem.kernel <- compute.kernel(TARAoceans$phychem, kernel.func = "linear")
pro.phylo.kernel <- compute.kernel(TARAoceans$pro.phylo, kernel.func = "abundance")
pro.NOGs.kernel <- compute.kernel(TARAoceans$pro.NOGs, kernel.func = "abundance")
# compute the meta kernel
meta.kernel <- combine.kernels(phychem = phychem.kernel,
                               pro.phylo = pro.phylo.kernel,
                               pro.NOGs = pro.NOGs.kernel, 
                               method = "full-UMKL")