cim.kernel {mixKernel} | R Documentation |
Compute and display similarities between multiple kernels
Description
Compute cosine from Frobenius norm between kernels and display the corresponding correlation plot.
Usage
cim.kernel(
...,
scale = TRUE,
method = c("circle", "square", "number", "shade", "color", "pie")
)
Arguments
... |
list of kernels (called 'blocks') computed on different datasets and measured on the same samples. |
scale |
boleean. If |
method |
character. The visualization method to be used. Currently, seven methods are supported (see Details). |
Details
The displayed similarities are the kernel generalization of the RV-coefficient described in Lavit et al., 1994.
The plot is displayed using the corrplot
package.
Seven visualization methods are implemented: "circle"
(default),
"square"
, "number"
, "pie"
, "shade"
and
"color"
. Circle and square areas are proportional to the absolute
value of corresponding similarities coefficients.
Value
cim.kernel
returns a matrix containing the cosine from
Frobenius norm between kernels.
Author(s)
Jerome Mariette <jerome.mariette@inrae.fr> Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>
References
Lavit C., Escoufier Y., Sabatier R. and Traissac P. (1994). The ACT (STATIS method). Computational Statistics and Data Analysis, 18(1), 97-119.
Mariette J. and Villa-Vialaneix N. (2018). Unsupervised multiple kernel learning for heterogeneous data integration. Bioinformatics, 34(6), 1009-1015.
See Also
Examples
data(TARAoceans)
# compute one kernel per dataset
phychem.kernel <- compute.kernel(TARAoceans$phychem, kernel.func = "linear")
pro.phylo.kernel <- compute.kernel(TARAoceans$pro.phylo,
kernel.func = "abundance")
pro.NOGs.kernel <- compute.kernel(TARAoceans$pro.NOGs,
kernel.func = "abundance")
# display similarities between kernels
cim.kernel(phychem = phychem.kernel,
pro.phylo = pro.phylo.kernel,
pro.NOGs = pro.NOGs.kernel,
method = "square")