| predict_coef {mixAR} | R Documentation |
Exact predictive parameters for multi-step MixAR prediction
Description
Exact predictive parameters for multi-step MixAR prediction.
Usage
predict_coef(model, maxh)
Arguments
model |
a MixAR model. |
maxh |
maximal horizon. |
Details
predict_coef() implements the method of
Boshnakov (2009) for the h-step prediction
of MixAR processes. The h-step predictive distribution has a MixAR
distribution with g^h components and this function computes its
parameters.
predict_coef() implements the results by
Boshnakov (2009) to compute the parameters
of the predictive distributions. predict_coef() is mostly a
helper function, use multiStep_dist for
prediction/forecasting (the exact method for multiStep_dist
uses predict_coef() to do the main work).
predict_coef() returns a list of lists containing the
quantities needed for each horizon h, see section Value.
Alternatiely, the parameters can be obtained as MixAR models
by calling the function generated by the exact method of
multiStep_dist with argument what = "MixAR".
Value
a list with components:
arcoefs |
a list, |
sigmas |
a list, |
probs |
a list, |
sStable |
a list, |
Author(s)
Georgi N. Boshnakov
References
Boshnakov GN (2009). “Analytic expressions for predictive distributions in mixture autoregressive models.” Stat. Probab. Lett. , 79(15), 1704-1709. doi:10.1016/j.spl.2009.04.009.