mixAR_BIC {mixAR} | R Documentation |
BIC based model selection for MixAR models
Description
BIC calculations for mixture autoregressive models.
Usage
mixAR_BIC(y, model, fix = NULL, comp_loglik = TRUE, index)
BIC_comp(x, y)
Arguments
y |
a time series. |
model |
the model for which to calculate BIC, an object inheriting from
class |
fix |
If |
comp_loglik |
Should the loglikelihood be calculated? Default is
|
index |
Discard the first |
x |
a list containing a combination of |
Details
mixAR_BIC
calculates the BIC criterion of a given MixAR
object with respect to a specified time series.
If index
is specified, it has to be at least equal to the
largest autoregressive order. The function calculates BIC on the last
(index + 1):n
data points.
BIC_comp
calculates the value of BIC for the models listed in
x
with respect to the specified time series y
.
If the distributions of the components contain estimated parameters, then their number is included in the number of parameters for the calculation of BIC.
Value
If comp_loglik = TRUE
, the function calculates BIC based on the
given model, data and index
.
If comp_loglik = FALSE
and model is output from
fit_mixAR
, it returns object vallogf
from that list.
Author(s)
Davide Ravagli
Examples
model1 <- new("MixARGaussian", prob = c(0.5, 0.5), scale = c(1, 2),
arcoef = list(-0.5, 1.1))
model2 <- new("MixARGaussian", prob = c(0.5, 0.3, 0.2), scale = c(1, 3, 8),
arcoef = list(c(-0.5, 0.5), 1, 0.4))
set.seed(123)
y <- mixAR_sim(model1, 400, c(0, 0, 0), nskip = 100)
mixAR_BIC(y, model1)
model_fit1 <- fit_mixAR(y, model1)
model_fit2 <- fit_mixAR(y, model2, crit = 1e-4)
mixAR_BIC(y, model_fit1)
mixAR_BIC(y, model_fit2)
BIC_comp(list(model1, model2, model_fit1, model_fit2), y)
mixAR_BIC(y, model_fit1, index = 20)
mixAR_BIC(y, model_fit2, index = 20)