fit_mixVAR-methods {mixAR} | R Documentation |
Fit mixture vector autoregressive models
Description
Estimate a MixVAR model for a multivariate time series. This is a generic function. The methods defined in package MixAR are described here.
Usage
fit_mixVAR(x, model, fix, ...)
Arguments
x |
a multivariate time series (currently a numeric matrix). |
model |
model, object inheriting from MixVAR class. |
fix |
if TRUE, fix the shift parameters. |
... |
additional arguments for the methods (not currently used). |
Details
model
specifies the model to fit. If model
inherits from
"MixVAR"
, it is used as a template. Estimation is done via
EM-Algorithm, using the function mixVARfit
.
Currently the default method for fit_mixAR
just throws error,
since there seems no suitable default task to do.
Value
a MixVAR model.
Methods
signature(x = "ANY", model = "MixVAR")
signature(x = "ANY", model = "ANY")
See Also
Examples
AR <- list()
AR[[1]] <- array(c(0.5, -0.3, -0.6, 0, 0, 0.5, 0.4, 0.5, -0.3), dim = c(3, 3, 1))
AR[[2]] <- array(c(-0.5, 0.3, 0, 1, 0, -0.5, -0.4, -0.2, 0.5), dim = c(3, 3, 1))
prob <- c(0.75, 0.25)
shift <- cbind(c(0, 0, 0), c(0, 0, 0))
Sigma1 <- cbind(c(1, 0.5, -0.4), c(0.5, 2, 0.8), c(-0.4, 0.8, 4))
Sigma2 <- cbind(c(1, 0.2, 0), c(0.2, 2, -0.15), c(0, -0.15, 4))
Sigma <- array(c(Sigma1, Sigma2), dim = c(3, 3, 2))
m <- new("MixVARGaussian", prob = prob, vcov = Sigma, arcoef = AR, shift = shift)
set.seed(1234)
y <- mixVAR_sim(m, n = 100, init = matrix(0, ncol = 3), nskip = 50, flag = FALSE)
fit_mixVAR(y, m, tol = 1e-3)
mixVARfit(y, m, tol = 1e-3)
[Package mixAR version 0.22.8 Index]