| fit_mixARreg-methods {mixAR} | R Documentation | 
Fit time series regression models with mixture autoregressive residuals
Description
Estimate a linear regression model for time series with residuals from a mixture autoregressive process.
Usage
fit_mixARreg(x, y, mixARmodel, EMinit, ...)
mixARreg(x, y, mixARmodel, tol = 1e-6, niter = 200)
Arguments
| x | the response time series (currently a numeric vector). | 
| y | 
 | 
| mixARmodel | An object inheriting from class  | 
| EMinit | starting values for EM estimation of MixAR parameters. If present,
must be a named list, containing at least  | 
| tol | threshold for convergence criterion. | 
| ... | passed on to  | 
| niter | maximal number of iterations. | 
Details
fit_mixARreg is a generic function. 
Currently there is no default method for fit_mixARreg.
Arguments y, mixARmodel, EMinit can be given in a
number of ways, see individual methods for details. 
Argument mixARmodel gives the details of the the MixAR part of
the model and initial values for the parameters. For
fit_mixARreg this can alternatively be done with a list using 
argument EMinit. Currently, at least one of the two must be
supplied, and if both are present EMinit is ignored.
mixARreg performs a two-step estimation of a linear regression
model with mixture autoregressive residuals.  It is the workhorse for
fit_mixARreg which calls it to do the computations.
Value
| reg | The summary output of the regression part of the model. | 
| mixARmodel | Estimates of the mixture autoregressive part of the model. | 
| niter | The number of iterations until convergence. | 
Methods
- signature(x = "ANY", y = "data.frame", mixARmodel = "MixAR", EMinit = "missing")
- Covariates - yare supplied as- data.frame: each column corresponds to one covariate. Initialization of- MixARparamters is done using input- mixARmodel
- signature(x = "ANY", y = "matrix", mixARmodel = "MixAR", EMinit = "missing")
- Covariates - yare supplied as- matrix: each column corresponds to one covariate. Initialization of- MixARparamters is done using input- mixARmodel
- signature(x = "ANY", y = "numeric", mixARmodel = "MixAR", EMinit = "missing")
- Covariates - yis supplied as- numeric: this method handles the simple regression case with a single covairate. Initialization of- MixARparamters is done using input- mixARmodel
- signature(x = "ANY", y = "ANY", mixARmodel = "missing", EMinit = "list")
- 
EMinitmust be a named list (see 'Arguments').
- signature(x = "ANY", y = "ANY", mixARmodel = "MixAR", EMinit = "list")
- 
When both mixARmodelandEMinitare supplied, the second is ignored.
Note
Estimation is done using the function mixARreg within each
method.
Author(s)
Davide Ravagli and Georgi N. Boshnakov
See Also
Examples
## Simulate covariates
set.seed(1234)
n <- 50 # for CRAN
y <- data.frame(rnorm(n, 7, 1), rt(n, 3), rnorm(n, 3, 2))
## Build mixAR part
model <- new("MixARGaussian", 
             prob   = exampleModels$WL_At@prob,      # c(0.5, 0.5)
             scale  = exampleModels$WL_At@scale,     # c(1, 2)        
             arcoef = exampleModels$WL_At@arcoef@a ) # list(-0.5, 1.1)
## Simulate from MixAR part
u <- mixAR_sim(model, n, 0)
x <- 10 + y[, 1] + 3 * y[, 2] + 2 * y[, 3] + u
## Fit model
## Using MixARGaussian
fit_mixARreg(x = x, y = y, mixARmodel = model, niter = 3)
## Using EMinit
EMinit <- list(prob = exampleModels$WL_At@prob, scale = exampleModels$WL_At@scale,
               arcoef = exampleModels$WL_At@arcoef@a)
fit_mixARreg(x = x, y = y, EMinit = EMinit, niter = 3)