| rRotationMatrix {mixAK} | R Documentation |
Random rotation matrix
Description
Generate a random rotation matrix, i.e., a matrix
\boldsymbol{P} = (p_{i,j})_{i=1,\dots,p, j=1,\dots,p},
which satisfies
a) \boldsymbol{P}\boldsymbol{P}' = \boldsymbol{I},
b) \boldsymbol{P}'\boldsymbol{P} = \boldsymbol{I},
c) \mbox{det}(\boldsymbol{P}) = 1.
Usage
rRotationMatrix(n, dim)
Arguments
n |
number of matrices to generate. |
dim |
dimension of a generated matrix/matrices. |
Details
For dim = 2, p_{2,1}
(\sin(\theta))
is generated from Unif(0, 1) and the rest computed as follows:
p_{1,1} = p_{2,2} = \sqrt{1 - p_{2,1}^2}
(\cos(\theta)) and
p_{1,2} = -p_{2,1}
(-\sin(\theta)).
For dim > 2, the matrix \boldsymbol{P} is generated
in the following steps:
1) Generate a p\times p matrix \boldsymbol{A} with
independent Unif(0, 1) elements and check whether \boldsymbol{A}
is of full rank p.
2) Computes a QR decomposition of \boldsymbol{A}, i.e.,
\boldsymbol{A} = \boldsymbol{Q}\boldsymbol{R} where
\boldsymbol{Q} satisfies
\boldsymbol{Q}\boldsymbol{Q}' = \boldsymbol{I},
\boldsymbol{Q}'\boldsymbol{Q} = \boldsymbol{I},
\mbox{det}(\boldsymbol{Q}) = (-1)^{p+1},
and columns of \boldsymbol{Q} spans the linear space generated by
the columns of \boldsymbol{A}.
3) For odd dim, return matrix \boldsymbol{Q}. For even
dim, return corrected matrix \boldsymbol{Q} to satisfy the
determinant condition.
Value
For n=1, a matrix is returned.
For n>1, a list of matrices is returned.
Author(s)
Arnošt Komárek arnost.komarek@mff.cuni.cz
References
Golub, G. H. and Van Loan, C. F. (1996, Sec. 5.1). Matrix Computations. Third Edition. Baltimore: The Johns Hopkins University Press.
Examples
P <- rRotationMatrix(n=1, dim=5)
print(P)
round(P %*% t(P), 10)
round(t(P) %*% P, 10)
det(P)
n <- 10
P <- rRotationMatrix(n=n, dim=5)
for (i in 1:3){
cat(paste("*** i=", i, "\n", sep=""))
print(P[[i]])
print(round(P[[i]] %*% t(P[[i]]), 10))
print(round(t(P[[i]]) %*% P[[i]], 10))
print(det(P[[i]]))
}