MVNmixture {mixAK} | R Documentation |
Mixture of (multivariate) normal distributions
Description
Density and random generation for the mixture of the p
-variate normal distributions
with means given by mean
, precision matrix given by Q
(or covariance
matrices given bySigma
).
Usage
dMVNmixture(x, weight, mean, Q, Sigma, log=FALSE)
dMVNmixture2(x, weight, mean, Q, Sigma, log=FALSE)
rMVNmixture(n, weight, mean, Q, Sigma)
rMVNmixture2(n, weight, mean, Q, Sigma)
Arguments
weight |
vector of length |
mean |
vector or matrix of mixture means. For |
Q |
precision matrices of the multivariate normal
distribution. Ignored if For |
Sigma |
covariance matrix of the multivariate normal
distribution. If For |
n |
number of observations to be sampled. |
x |
vector or matrix of the points where the density should be evaluated. |
log |
logical; if |
Details
Functions dMVNmixture
and dMVNmixture2
differ only
internally in the way they compute the mixture density. In
dMVNmixture
, only multivariate normal densities are evaluated
in compiled C++ code and mixing is done directly in R. In
dMVNmixture2
, everything is evaluated in compiled C++
code. Normally, both dMVNmixture
and dMVNmixture2
should
return the same results.
Similarly for rMVNmixture
and rMVNmixture2
. Another
difference is that rMVNmixture
returns only random generated
points and rMVNmixture2
also values of the density evaluated in
the generated points.
Value
Some objects.
Value for dMVNmixture
A vector with evaluated values of the (log-)density.
Value for dMVNmixture2
A vector with evaluated values of the (log-)density.
Value for rMVNmixture
A vector (for n=1
or for univariate mixture)
or matrix with sampled values (in rows of the matrix).
Value for rMVNmixture2
A list with components named x
which is
a vector (for n=1
or for univariate mixture)
or matrix with sampled values (in rows of the matrix)
and dens
which are the values of the density evaluated in x
.
Author(s)
Arnošt Komárek arnost.komarek@mff.cuni.cz
See Also
Examples
set.seed(1977)
##### Univariate normal mixture
##### =========================
mu <- c(-1, 1)
Sigma <- c(0.25^2, 0.4^2)
Q <- 1/Sigma
w <- c(0.3, 0.7)
xx <- seq(-2, 2.5, length=100)
yyA <- dMVNmixture(xx, weight=w, mean=mu, Sigma=Sigma)
yyB <- dMVNmixture(xx, weight=w, mean=mu, Q=Q)
yyC <- dMVNmixture2(xx, weight=w, mean=mu, Sigma=Sigma)
yyD <- dMVNmixture2(xx, weight=w, mean=mu, Q=Q)
xxSample <- rMVNmixture(1000, weight=w, mean=mu, Sigma=Sigma)
xxSample2 <- rMVNmixture2(1000, weight=w, mean=mu, Sigma=Sigma)
sum(abs(xxSample2$dens - dMVNmixture(xxSample2$x, weight=w, mean=mu, Sigma=Sigma)) > 1e-15)
xxSample2 <- xxSample2$x
par(mfrow=c(2, 2), bty="n")
plot(xx, yyA, type="l", col="red", xlab="x", ylab="f(x)")
points(xx, yyB, col="darkblue")
hist(xxSample, col="lightblue", prob=TRUE, xlab="x", xlim=range(xx), ylim=c(0, max(yyA)),
main="Sampled values")
lines(xx, yyA, col="red")
plot(xx, yyC, type="l", col="red", xlab="x", ylab="f(x)")
points(xx, yyD, col="darkblue")
hist(xxSample2, col="sandybrown", prob=TRUE, xlab="x", xlim=range(xx), ylim=c(0, max(yyA)),
main="Sampled values")
lines(xx, yyC, col="red")
##### Bivariate normal mixture
##### ========================
### Choice 1
sd11 <- sd12 <- 1.1
sd21 <- 0.5
sd22 <- 1.5
rho2 <- 0.7
Xlim <- c(-3, 4)
Ylim <- c(-6, 4)
### Choice 2
sd11 <- sd12 <- 0.3
sd21 <- 0.5
sd22 <- 0.3
rho2 <- 0.8
Xlim <- c(-3, 2.5)
Ylim <- c(-2.5, 2.5)
mu <- matrix(c(1,1, -1,-1), nrow=2, byrow=TRUE)
Sigma <- list(diag(c(sd11^2, sd12^2)),
matrix(c(sd21^2, rho2*sd21*sd22, rho2*sd21*sd22, sd22^2), nrow=2))
Q <- list(chol2inv(chol(Sigma[[1]])), chol2inv(chol(Sigma[[2]])))
w <- c(0.3, 0.7)
xx1 <- seq(mu[2,1]-3*sd21, mu[1,1]+3*sd11, length=100)
xx2 <- seq(mu[2,2]-3*sd22, mu[1,2]+3*sd12, length=90)
XX <- cbind(rep(xx1, length(xx2)), rep(xx2, each=length(xx1)))
yyA <- matrix(dMVNmixture(XX, weight=w, mean=mu, Sigma=Sigma), nrow=length(xx1), ncol=length(xx2))
yyB <- matrix(dMVNmixture(XX, weight=w, mean=mu, Q=Q), nrow=length(xx1), ncol=length(xx2))
yyC <- matrix(dMVNmixture2(XX, weight=w, mean=mu, Sigma=Sigma), nrow=length(xx1), ncol=length(xx2))
yyD <- matrix(dMVNmixture2(XX, weight=w, mean=mu, Q=Q), nrow=length(xx1), ncol=length(xx2))
#xxSample <- rMVNmixture(1000, weight=w, mean=mu, Sigma=Sigma)
### Starting from version 3.6, the above command led to SegFault
### on CRAN r-patched-solaris-sparc check.
### Commented here on 20140806 (version 3.6-1).
xxSample2 <- rMVNmixture2(1000, weight=w, mean=mu, Sigma=Sigma)
sum(abs(xxSample2$dens - dMVNmixture(xxSample2$x, weight=w, mean=mu, Sigma=Sigma)) > 1e-15)
xxSample2 <- xxSample2$x
par(mfrow=c(1, 2), bty="n")
plot(xxSample, col="darkblue", xlab="x1", ylab="x2", xlim=Xlim, ylim=Ylim)
contour(xx1, xx2, yyA, col="red", add=TRUE)
plot(xxSample2, col="darkblue", xlab="x1", ylab="x2", xlim=Xlim, ylim=Ylim)
contour(xx1, xx2, yyC, col="red", add=TRUE)
par(mfrow=c(2, 2), bty="n")
contour(xx1, xx2, yyA, col="red", xlab="x1", ylab="x2")
points(mu[,1], mu[,2], col="darkgreen")
persp(xx1, xx2, yyA, col="lightblue", xlab="x1", ylab="x2", zlab="f(x1, x2)")
contour(xx1, xx2, yyB, col="red", xlab="x1", ylab="x2")
points(mu[,1], mu[,2], col="darkgreen")
persp(xx1, xx2, yyB, col="lightblue", xlab="x1", ylab="x2", zlab="f(x1, x2)", phi=30, theta=30)
par(mfrow=c(2, 2), bty="n")
contour(xx1, xx2, yyC, col="red", xlab="x1", ylab="x2")
points(mu[,1], mu[,2], col="darkgreen")
persp(xx1, xx2, yyC, col="lightblue", xlab="x1", ylab="x2", zlab="f(x1, x2)")
contour(xx1, xx2, yyD, col="red", xlab="x1", ylab="x2")
points(mu[,1], mu[,2], col="darkgreen")
persp(xx1, xx2, yyD, col="lightblue", xlab="x1", ylab="x2", zlab="f(x1, x2)", phi=30, theta=30)