confint.mitml.testEstimates {mitml} | R Documentation |
Summarize and extract pooled parameter estimates
Description
Functions for extracting results and computing confidence intervals from the pooled parameter estimates computed with testEstimates
.
Usage
## S3 method for class 'mitml.testEstimates'
coef(object, ...)
## S3 method for class 'mitml.testEstimates'
vcov(object, ...)
## S3 method for class 'mitml.testEstimates'
confint(object, parm, level = 0.95, ...)
Arguments
object |
An object of class |
parm |
(optional) A reference to the parameters for which to calculate confidence intervals. Can be a character or integer vector denoting names or position of parameters, respectively. If missing, all parameters are considered (the default). |
level |
The confidence level. Default is to |
... |
Not being used. |
Details
These functions can be used to extract information and compute additional results from pooled parameter estimates.
The coef
and vcov
methods extract the pooled parameter estimates and their pooled variance-covariance matrix (with the squared standard errors in the diagonal).
The confint
method computes confidence intervals with the given confidence level for the pooled parameters on the basis of a t
-distribution, with estimates, standard errors, and degrees of freedom as returned by testEstimates
.
Value
For coef
: A vector containing the pooled parameter estimates
For vcov
: A matrix containing the pooled variance-covariance matrix of the parameter estimates.
For confint
: A matrix containing the lower and upper bounds of the confidence intervals.
Author(s)
Simon Grund
See Also
Examples
data(studentratings)
fml <- ReadDis ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 500, n.iter = 100, m = 5)
implist <- mitmlComplete(imp)
# fit regression model
fit <- with(implist, lm(ReadDis ~ 1 + ReadAchiev))
est <- testEstimates(fit)
# extract parameter estimates and variance-covariance matrix
coef(est)
vcov(est)
# compute confidence intervals
confint(est)
# ... with different confidence levels
confint(est, level = 0.90)
confint(est, level = 0.999)