test.z {misty} | R Documentation |
z-Test
Description
This function performs one-sample, two-sample, and paired-sample z-tests and provides descriptive statistics, effect size measure, and a plot showing error bars for (difference-adjusted) confidence intervals with jittered data points.
Usage
test.z(x, ...)
## Default S3 method:
test.z(x, y = NULL, sigma = NULL, sigma2 = NULL, mu = 0,
paired = FALSE, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, hypo = TRUE, descript = TRUE, effsize = FALSE,
plot = FALSE, point.size = 4, adjust = TRUE, error.width = 0.1,
xlab = NULL, ylab = NULL, ylim = NULL, breaks = ggplot2::waiver(),
line = TRUE, line.type = 3, line.size = 0.8, jitter = TRUE,
jitter.size = 1.25, jitter.width = 0.05, jitter.height = 0,
jitter.alpha = 0.1, title = "", subtitle = "Confidence Interval",
digits = 2, p.digits = 4, as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE, ...)
## S3 method for class 'formula'
test.z(formula, data, sigma = NULL, sigma2 = NULL,
alternative = c("two.sided", "less", "greater"), conf.level = 0.95,
hypo = TRUE, descript = TRUE, effsize = FALSE,
plot = FALSE, point.size = 4, adjust = TRUE, error.width = 0.1,
xlab = NULL, ylab = NULL, ylim = NULL, breaks = ggplot2::waiver(),
jitter = TRUE, jitter.size = 1.25, jitter.width = 0.05, jitter.height = 0,
jitter.alpha = 0.1, title = "", subtitle = "Confidence Interval",
digits = 2, p.digits = 4, as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE, ...)
Arguments
x |
a numeric vector of data values. |
... |
further arguments to be passed to or from methods. |
y |
a numeric vector of data values. |
sigma |
a numeric vector indicating the population standard deviation(s).
In case of two-sample z-test, equal standard deviations are
assumed when specifying one value for the argument |
sigma2 |
a numeric vector indicating the population variance(s). In
case of two-sample z-test, equal variances are assumed when
specifying one value for the argument |
mu |
a numeric value indicating the population mean under the null
hypothesis. Note that the argument |
paired |
logical: if |
alternative |
a character string specifying the alternative hypothesis,
must be one of |
hypo |
logical: if |
descript |
logical: if |
effsize |
logical: if |
conf.level |
a numeric value between 0 and 1 indicating the confidence level of the interval. |
plot |
logical: if |
point.size |
a numeric value indicating the |
adjust |
logical: if |
error.width |
a numeric value indicating the horizontal bar width of the error bar. |
xlab |
a character string specifying the labels for the x-axis. |
ylab |
a character string specifying the labels for the y-axis. |
ylim |
a numeric vector of length two specifying limits of the limits of the y-axis. |
breaks |
a numeric vector specifying the points at which tick-marks are drawn at the y-axis. |
line |
logical: if |
line.type |
an integer value or character string specifying the line type for the line representing the population mean under the null hypothesis, i.e., 0 = blank, 1 = solid, 2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 = twodash. |
line.size |
a numeric value indicating the |
jitter |
logical: if |
jitter.size |
a numeric value indicating the |
jitter.width |
a numeric value indicating the amount of horizontal jitter. |
jitter.height |
a numeric value indicating the amount of vertical jitter. |
jitter.alpha |
a numeric value indicating the opacity of the jittered data points. |
title |
a character string specifying the text for the title for the plot. |
subtitle |
a character string specifying the text for the subtitle for the plot. |
digits |
an integer value indicating the number of decimal places to be used for displaying descriptive statistics and confidence interval. |
p.digits |
an integer value indicating the number of decimal places to be used for displaying the p-value. |
as.na |
a numeric vector indicating user-defined missing values,
i.e. these values are converted to |
write |
a character string naming a text file with file extension
|
append |
logical: if |
check |
logical: if |
output |
logical: if |
formula |
in case of two sample z-test (i.e., |
data |
a matrix or data frame containing the variables in the formula
|
Details
Cohen's d reported when argument effsize = TRUE
is based on the population
standard deviation specified in sigma
or the square root of the population
variance specified in sigma2
. In a one-sample and paired-sample design,
Cohen's d is the mean of the difference scores divided by the population standard
deviation of the difference scores (i.e., equivalent to Cohen's d_z
according
to Lakens, 2013). In a two-sample design, Cohen's d is the difference between
means of the two groups of observations divided by either the population standard
deviation when assuming and specifying equal standard deviations or the unweighted
pooled population standard deviation when assuming and specifying unequal standard
deviations.
Value
Returns an object of class misty.object
, which is a list with following
entries:
call |
function call |
type |
type of analysis |
sample |
type of sample, i.e., one-, two-, or paired sample |
formula |
formula of the current analysis |
data |
data frame specified in |
plot |
ggplot2 object for plotting the results |
args |
specification of function arguments |
result |
result table |
Author(s)
Takuya Yanagida takuya.yanagida@univie.ac.at
References
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 1-12. https://doi.org/10.3389/fpsyg.2013.00863
Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS. John Wiley & Sons.
See Also
test.t
, aov.b
, aov.w
, test.welch
,
cohens.d
, ci.mean.diff
, ci.mean
Examples
dat1 <- data.frame(group = c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2),
x = c(3, 1, 4, 2, 5, 3, 2, 3, 6, 4, 3, NA))
#-------------------------------------------------------------------------------
# One-Sample Design
# Example 1a: Two-sided one-sample z-test
# population mean = 3, population standard deviation = 1.2
test.z(dat1$x, sigma = 1.2, mu = 3)
# Example 1b: Two-sided one-sample z-test
# population mean = 3, population variance = 1.44
test.z(dat1$x, sigma2 = 1.44, mu = 3)
# Example 1c: One-sided one-sample z-test
# population mean = 3, population standard deviation = 1.2
test.z(dat1$x, sigma = 1.2, mu = 3, alternative = "greater")
# Example 1d: Two-sided one-sample z-test
# population mean = 3, population standard deviation = 1.2
# convert value 3 to NA
test.z(dat1$x, sigma = 1.2, mu = 3, as.na = 3)
# Example 1e: Two-sided one-sample z-test
# population mean = 3, population standard deviation = 1.2
# print Cohen's d
test.z(dat1$x, sigma = 1.2, mu = 3, effsize = TRUE)
# Example 1f: Two-sided one-sample z-test
# population mean = 3, population standard deviation = 1.2
# do not print hypotheses and descriptive statistics
test.z(dat1$x, sigma = 1.2, mu = 3, hypo = FALSE, descript = FALSE)
# Example 1g: Two-sided one-sample z-test
# population mean = 3, population standard deviation = 1.2
# print descriptive statistics with 3 digits and p-value with 5 digits
test.z(dat1$x, sigma = 1.2, mu = 3, digits = 3, p.digits = 5)
## Not run:
# Example 1h: Two-sided one-sample z-test
# population mean = 3, population standard deviation = 1.2
# plot results
test.z(dat1$x, sigma = 1.2, mu = 3, plot = TRUE)
# Load ggplot2 package
library(ggplot2)
# Save plot, ggsave() from the ggplot2 package
ggsave("One-sample_z-test.png", dpi = 600, width = 3, height = 6)
# Example 1i: Two-sided one-sample z-test
# population mean = 3, population standard deviation = 1.2
# extract plot
p <- test.z(dat1$x, sigma = 1.2, mu = 3, output = FALSE)$plot
p
# Extract data
plotdat <- data.frame(test.z(dat1$x, sigma = 1.2, mu = 3, output = FALSE)$data[[1]])
# Extract results
result <- test.z(dat1$x, sigma = 1.2, mu = 3, output = FALSE)$result
# Draw plot in line with the default setting of test.z()
ggplot(plotdat, aes(0, x)) +
geom_point(data = result, aes(x = 0L, m), size = 4) +
geom_errorbar(data = result, aes(x = 0L, y = m, ymin = m.low, ymax = m.upp),
width = 0.2) +
scale_x_continuous(name = NULL, limits = c(-2, 2)) +
scale_y_continuous(name = NULL) +
geom_hline(yintercept = 3, linetype = 3, linewidth = 0.8) +
labs(subtitle = "Two-Sided 95
theme_bw() + theme(plot.subtitle = element_text(hjust = 0.5),
axis.text.x = element_blank(),
axis.ticks.x = element_blank())
## End(Not run)
#-------------------------------------------------------------------------------
# Two-Sample Design
# Example 2a: Two-sided two-sample z-test
# population standard deviation (SD) = 1.2, equal SD assumption
test.z(x ~ group, sigma = 1.2, data = dat1)
# Example 2b: Two-sided two-sample z-test
# population standard deviation (SD) = 1.2 and 1.5, unequal SD assumption
test.z(x ~ group, sigma = c(1.2, 1.5), data = dat1)
# Example 2c: Two-sided two-sample z-test
# population variance (Var) = 1.44 and 2.25, unequal Var assumption
test.z(x ~ group, sigma2 = c(1.44, 2.25), data = dat1)
# Example 2d: One-sided two-sample z-test
# population standard deviation (SD) = 1.2, equal SD assumption
test.z(x ~ group, sigma = 1.2, data = dat1, alternative = "greater")
# Example 2e: Two-sided two-sample z-test
# population standard deviation (SD) = 1.2, equal SD assumption
# print Cohen's d
test.z(x ~ group, sigma = 1.2, data = dat1, effsize = TRUE)
# Example 2f: Two-sided two-sample z-test
# population standard deviation (SD) = 1.2, equal SD assumption
# do not print hypotheses and descriptive statistics,
# print Cohen's d
test.z(x ~ group, sigma = 1.2, data = dat1, descript = FALSE, hypo = FALSE)
# Example 2g: Two-sided two-sample z-test
# population mean = 3, population standard deviation = 1.2
# print descriptive statistics with 3 digits and p-value with 5 digits
test.z(x ~ group, sigma = 1.2, data = dat1, digits = 3, p.digits = 5)
## Not run:
# Example 2h: Two-sided two-sample z-test
# population standard deviation (SD) = 1.2, equal SD assumption
# plot results
test.z(x ~ group, sigma = 1.2, data = dat1, plot = TRUE)
# Load ggplot2 package
library(ggplot2)
# Save plot, ggsave() from the ggplot2 package
ggsave("Two-sample_z-test.png", dpi = 600, width = 4, height = 6)
# Example 2i: Two-sided two-sample z-test
# population standard deviation (SD) = 1.2, equal SD assumption
# extract plot
p <- test.z(x ~ group, sigma = 1.2, data = dat1, output = FALSE)$plot
p
## End(Not run)
#-----------------
group1 <- c(3, 1, 4, 2, 5, 3, 6, 7)
group2 <- c(5, 2, 4, 3, 1)
# Example 2j: Two-sided two-sample z-test
# population standard deviation (SD) = 1.2, equal SD assumption
test.z(group1, group2, sigma = 1.2)
#-------------------------------------------------------------------------------
# Paired-Sample Design
dat2 <- data.frame(pre = c(1, 3, 2, 5, 7),
post = c(2, 2, 1, 6, 8), stringsAsFactors = FALSE)
# Example 3a: Two-sided paired-sample z-test
# population standard deviation of difference score = 1.2
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE)
# Example 3b: Two-sided paired-sample z-test
# population variance of difference score = 1.44
test.z(dat2$pre, dat2$post, sigma2 = 1.44, paired = TRUE)
# Example 3c: One-sided paired-sample z-test
# population standard deviation of difference score = 1.2
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE,
alternative = "greater")
# Example 3d: Two-sided paired-sample z-test
# population standard deviation of difference score = 1.2
# convert value 1 to NA
test.z(dat2$pre, dat2$post, sigma = 1.2, as.na = 1, paired = TRUE)
# Example 3e: Two-sided paired-sample z-test
# population standard deviation of difference score = 1.2
# print Cohen's d
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE, effsize = TRUE)
# Example 3f: Two-sided paired-sample z-test
# population standard deviation of difference score = 1.2
# do not print hypotheses and descriptive statistics
test.z(dat2$pre, dat2$post, sigma = 1.2, mu = 3, paired = TRUE,
hypo = FALSE, descript = FALSE)
# Example 3g: Two-sided paired-sample z-test
# population standard deviation of difference score = 1.2
# print descriptive statistics with 3 digits and p-value with 5 digits
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE,
digits = 3, p.digits = 5)
## Not run:
# Example 3h: Two-sided paired-sample z-test
# population standard deviation of difference score = 1.2
# plot results
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE, plot = TRUE)
# Load ggplot2 package
library(ggplot2)
# Save plot, ggsave() from the ggplot2 package
ggsave("Paired-sample_z-test.png", dpi = 600, width = 3, height = 6)
# Example 3i: Two-sided paired-sample z-test
# population standard deviation of difference score = 1.2
# extract plot
p <- test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE, output = FALSE)$plot
p
# Extract data
plotdat <- data.frame(test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE,
output = FALSE)$data)
# Difference score
plotdat$diff <- plotdat$y - plotdat$x
# Extract results
result <- test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE,
output = FALSE)$result
# Draw plot in line with the default setting of test.t()
ggplot(plotdat, aes(0, diff)) +
geom_point(data = result, aes(x = 0, m.diff), size = 4) +
geom_errorbar(data = result,
aes(x = 0L, y = m.diff, ymin = m.low, ymax = m.upp), width = 0.2) +
scale_x_continuous(name = NULL, limits = c(-2, 2)) +
scale_y_continuous(name = "y") +
geom_hline(yintercept = 0, linetype = 3, linewidth = 0.8) +
labs(subtitle = "Two-Sided 95
theme_bw() + theme(plot.subtitle = element_text(hjust = 0.5),
axis.text.x = element_blank(),
axis.ticks.x = element_blank())
## End(Not run)