skewness {misty} | R Documentation |
Skewness and Kurtosis
Description
The function skewness
computes the skewness, the function kurtosis
computes the kurtosis.
Usage
skewness(..., data = NULL, as.na = NULL, check = TRUE)
kurtosis(..., data = NULL, as.na = NULL, check = TRUE)
Arguments
... |
a numeric vector. Alternatively, an expression indicating the
variable names in |
data |
a data frame when specifying the variable in the argument
|
as.na |
a numeric vector indicating user-defined missing values,
i.e. these values are converted to |
check |
logical: if |
Details
The same method for estimating skewness and kurtosis is used in SAS and SPSS.
Missing values (NA
) are stripped before the computation. Note that at
least 3 observations are needed to compute skewness and at least 4 observations
are needed to compute excess kurtosis.
Value
Returns the estimated skewness or kurtosis of x
.
Author(s)
Takuya Yanagida takuya.yanagida@univie.ac.at
References
Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS. New York: John Wiley & Sons.
See Also
Examples
# Set seed of the random number generation
set.seed(123)
# Generate random numbers according to N(0, 1)
x <- rnorm(100)
# Example 1: Compute skewness
skewness(x)
# Example 2: Compute excess kurtosis
kurtosis(x)