item.omega {misty} | R Documentation |
Coefficient Omega, Hierarchical Omega, and Categorical Omega
Description
This function computes point estimate and confidence interval for the coefficient omega (McDonald, 1978), hierarchical omega (Kelley & Pornprasertmanit, 2016), and categorical omega (Green & Yang, 2009) along with standardized factor loadings and omega if item deleted.
Usage
item.omega(..., data = NULL, rescov = NULL, type = c("omega", "hierarch", "categ"),
exclude = NULL, std = FALSE, na.omit = FALSE,
print = c("all", "omega", "item"), digits = 2, conf.level = 0.95,
as.na = NULL, write = NULL, append = TRUE, check = TRUE,
output = TRUE)
Arguments
... |
a matrix or data frame. Note that at least three items are
needed for computing omega. Alternatively, an expression
indicating the variable names in |
data |
a data frame when specifying one or more variables in the
argument |
rescov |
a character vector or a list of character vectors for specifying
residual covariances when computing coefficient omega, e.g.
|
type |
a character string indicating the type of omega to be computed, i.e.,
|
exclude |
a character vector indicating items to be excluded from the analysis. |
std |
logical: if |
na.omit |
logical: if |
print |
a character vector indicating which results to show, i.e.
|
digits |
an integer value indicating the number of decimal places to be used for displaying omega and standardized factor loadings. |
conf.level |
a numeric value between 0 and 1 indicating the confidence level of the interval. |
as.na |
a numeric vector indicating user-defined missing values,
i.e. these values are converted to |
write |
a character string naming a file for writing the output into
either a text file with file extension |
append |
logical: if |
check |
logical: if |
output |
logical: if |
Details
Omega is computed by estimating a confirmatory factor analysis model using the
cfa()
function in the lavaan package by Yves Rosseel (2019). Maximum
likelihood ("ML"
) estimator is used for computing coefficient omega and
hierarchical omega, while diagonally weighted least squares estimator ("DWLS"
)
is used for computing categorical omega.
Approximate confidence intervals are computed using the procedure by Feldt, Woodruff
and Salih (1987). Note that there are at least 10 other procedures for computing
the confidence interval (see Kelley and Pornprasertmanit, 2016), which are implemented
in the ci.reliability()
function in the MBESSS package by Ken Kelley (2019).
Value
Returns an object of class misty.object
, which is a list with following
entries:
call |
function call |
type |
type of analysis |
data |
data frame used for the current analysis |
args |
specification of function arguments |
model.fit |
fitted lavaan object ( |
result |
list with result tables, i.e., |
Note
Computation of the hierarchical and categorical omega is based on
the ci.reliability()
function in the MBESS package by Ken Kelley
(2019).
Author(s)
Takuya Yanagida takuya.yanagida@univie.ac.at
References
Feldt, L. S., Woodruff, D. J., & Salih, F. A. (1987). Statistical inference for coefficient alpha. Applied Psychological Measurement, 11 93-103.
Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. Psychometrika, 74, 155-167. https://doi.org/10.1007/s11336-008-9099-3
Kelley, K., & Pornprasertmanit, S. (2016). Confidence intervals for population reliability coefficients: Evaluation of methods, recommendations, and software for composite measures. Psychological Methods, 21, 69-92. http://dx.doi.org/10.1037/a0040086
Ken Kelley (2019). MBESS: The MBESS R Package. R package version 4.6.0. https://CRAN.R-project.org/package=MBESS
McDonald, R. P. (1978). Generalizability in factorable domains: Domain validity and generalizability. Educational and Psychological Measurement, 38, 75-79.
See Also
write.result
, item.alpha
, item.cfa
,
item.reverse
, item.scores
Examples
## Not run:
dat <- data.frame(item1 = c(5, 2, 3, 4, 1, 2, 4, 2),
item2 = c(5, 3, 3, 5, 2, 2, 5, 1),
item3 = c(4, 2, 4, 5, 1, 3, 5, 1),
item4 = c(5, 1, 2, 5, 2, 3, 4, 2))
# Example 1a: Compute unstandardized coefficient omega and item statistics
item.omega(dat)
# Example 1b: Alternative specification using the 'data' argument
item.omega(., data = dat)
# Example 2: Compute unstandardized coefficient omega with a residual covariance
# and item statistics
item.omega(dat, rescov = c("item1", "item2"))
# Example 3: Compute unstandardized coefficient omega with residual covariances
# and item statistics
item.omega(dat, rescov = list(c("item1", "item2"), c("item1", "item3")))
# Example 4: Compute unstandardized hierarchical omega and item statistics
item.omega(dat, type = "hierarch")
# Example 5: Compute categorical omega and item statistics
item.omega(dat, type = "categ")
# Example 6: Compute standardized coefficient omega and item statistics
item.omega(dat, std = TRUE)
# Example 7: Compute unstandardized coefficient omega
item.omega(dat, print = "omega")
# Example 8: Compute item statistics
item.omega(dat, print = "item")
# Example 9: Compute unstandardized coefficient omega and item statistics while excluding item3
item.omega(dat, exclude = "item3")
# Example 10: Summary of the CFA model used to compute coefficient omega
lavaan::summary(item.omega(dat, output = FALSE)$model.fit,
fit.measures = TRUE, standardized = TRUE)
# Example 11a: Write results into a text file
item.omega(dat, write = "Omega.txt")
# Example 11b: Write results into a Excel file
item.omega(dat, write = "Omega.xlsx")
result <- item.omega(dat, output = FALSE)
write.result(result, "Omega.xlsx")
## End(Not run)