df.duplicated {misty} | R Documentation |
Extract Duplicated or Unique Rows
Description
The function df.duplicated
extracts duplicated rows and the function
df.unique
extracts unique rows from a matrix or data frame.
Usage
df.duplicated(..., data, first = TRUE, keep.all = TRUE, from.last = FALSE,
keep.row.names = TRUE, check = TRUE)
df.unique(..., data, keep.all = TRUE, from.last = FALSE,
keep.row.names = TRUE, check = TRUE)
Arguments
... |
an expression indicating the variable names in |
data |
a data frame. |
first |
logical: if |
keep.all |
logical: if |
from.last |
logical: if |
keep.row.names |
logical: if |
check |
logical: if |
Details
Note that df.unique(x)
is equivalent to unique(x)
. That is, the
main difference between the df.unique()
and the unique()
function is
that the df.unique()
function provides the ...
argument to
specify a variable or multiple variables which are used to determine unique rows.
Value
Returns duplicated or unique rows of the data frame in ...
or data
.
Author(s)
Takuya Yanagida takuya.yanagida@univie.ac.at
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.
See Also
df.merge
,
df.move
, df.rbind
,
df.rename
, df.sort
,
df.subset
Examples
dat <- data.frame(x1 = c(1, 1, 2, 1, 4),
x2 = c(1, 1, 2, 1, 6),
x3 = c(2, 2, 3, 2, 6),
x4 = c(1, 1, 2, 2, 4),
x5 = c(1, 1, 4, 4, 3))
#-------------------------------------------------------------------------------
# df.duplicated() function
# Example 1: Extract duplicated rows based on all variables
df.duplicated(., data = dat)
# Example 2: Extract duplicated rows based on x4
df.duplicated(x4, data = dat)
# Example 3: Extract duplicated rows based on x2 and x3
df.duplicated(x2, x3, data = dat)
# Example 4: Extract duplicated rows based on all variables
# exclude first of identical rows
df.duplicated(., data = dat, first = FALSE)
# Example 5: Extract duplicated rows based on x2 and x3
# do not return all variables
df.duplicated(x2, x3, data = dat, keep.all = FALSE)
# Example 6: Extract duplicated rows based on x4
# consider duplication from the reversed side
df.duplicated(x4, data = dat, first = FALSE, from.last = TRUE)
# Example 7: Extract duplicated rows based on x2 and x3
# set row names to NULL
df.duplicated(x2, x3, data = dat, keep.row.names = FALSE)
#-------------------------------------------------------------------------------
# df.unique() function
# Example 8: Extract unique rows based on all variables
df.unique(., data = dat)
# Example 9: Extract unique rows based on x4
df.unique(x4, data = dat)
# Example 10: Extract unique rows based on x1, x2, and x3
df.unique(x1, x2, x3, data = dat)
# Example 11: Extract unique rows based on x2 and x3
# do not return all variables
df.unique(x2, x3, data = dat, keep.all = FALSE)
# Example 12: Extract unique rows based on x4
# consider duplication from the reversed side
df.unique(x4, data = dat, from.last = TRUE)
# Example 13: Extract unique rows based on x2 and x3
# set row names to NULL
df.unique(x2, x3, data = dat, keep.row.names = FALSE)