| df.duplicated {misty} | R Documentation | 
Extract Duplicated or Unique Rows
Description
The function df.duplicated extracts duplicated rows and the function
df.unique extracts unique rows from a matrix or data frame.
Usage
df.duplicated(..., data, first = TRUE, keep.all = TRUE, from.last = FALSE,
              keep.row.names = TRUE, check = TRUE)
df.unique(..., data, keep.all = TRUE, from.last = FALSE,
          keep.row.names = TRUE, check = TRUE)
Arguments
... | 
 an expression indicating the variable names in   | 
data | 
 a data frame.  | 
first | 
 logical: if   | 
keep.all | 
 logical: if   | 
from.last | 
 logical: if   | 
keep.row.names | 
 logical: if   | 
check | 
 logical: if   | 
Details
Note that df.unique(x) is equivalent to unique(x). That is, the
main difference between the df.unique() and the unique() function is
that the df.unique() function provides the ... argument to
specify a variable or multiple variables which are used to determine unique rows.
Value
Returns duplicated or unique rows of the data frame in ... or data.
Author(s)
Takuya Yanagida takuya.yanagida@univie.ac.at
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.
See Also
df.merge,
df.move, df.rbind,
df.rename, df.sort,
df.subset
Examples
dat <- data.frame(x1 = c(1, 1, 2, 1, 4),
                  x2 = c(1, 1, 2, 1, 6),
                  x3 = c(2, 2, 3, 2, 6),
                  x4 = c(1, 1, 2, 2, 4),
                  x5 = c(1, 1, 4, 4, 3))
#-------------------------------------------------------------------------------
# df.duplicated() function
# Example 1: Extract duplicated rows based on all variables
df.duplicated(., data = dat)
# Example 2: Extract duplicated rows based on x4
df.duplicated(x4, data = dat)
# Example 3: Extract duplicated rows based on x2 and x3
df.duplicated(x2, x3, data = dat)
# Example 4: Extract duplicated rows based on all variables
# exclude first of identical rows
df.duplicated(., data = dat, first = FALSE)
# Example 5: Extract duplicated rows based on x2 and x3
# do not return all variables
df.duplicated(x2, x3, data = dat, keep.all = FALSE)
# Example 6: Extract duplicated rows based on x4
# consider duplication from the reversed side
df.duplicated(x4, data = dat, first = FALSE, from.last = TRUE)
# Example 7: Extract duplicated rows based on x2 and x3
# set row names to NULL
df.duplicated(x2, x3, data = dat, keep.row.names = FALSE)
#-------------------------------------------------------------------------------
# df.unique() function
# Example 8: Extract unique rows based on all variables
df.unique(., data = dat)
# Example 9: Extract unique rows based on x4
df.unique(x4, data = dat)
# Example 10: Extract unique rows based on x1, x2, and x3
df.unique(x1, x2, x3, data = dat)
# Example 11: Extract unique rows based on x2 and x3
# do not return all variables
df.unique(x2, x3, data = dat, keep.all = FALSE)
# Example 12: Extract unique rows based on x4
# consider duplication from the reversed side
df.unique(x4, data = dat, from.last = TRUE)
# Example 13: Extract unique rows based on x2 and x3
# set row names to NULL
df.unique(x2, x3, data = dat, keep.row.names = FALSE)