updateLSVM {mistral} | R Documentation |
Update LSVM classifier
Description
Update the existing classifier LSVM with a new set of data.
Usage
updateLSVM(X.new,
Y.new,
X,
Y,
A.model.lsvm,
convexity,
PLOTSVM = FALSE,
step.plot.LSVM = 1,
hyperplanes = FALSE,
limit.state.estimate = TRUE)
Arguments
X.new |
a matrix containing a new data sets |
Y.new |
a vector containing -1 or +1 that reprensents the class of each elements of X.new. |
X |
a matrix containing the data sets |
Y |
a vector containing -1 or +1 that reprensents the class of each elements of X. |
A.model.lsvm |
a matrix containing the parameters of all hyperplanes. |
convexity |
Either -1 if the set of data associated to the label "-1" is convex or +1 otherwise. |
PLOTSVM |
A boolean. If TRUE, plot the data. |
step.plot.LSVM |
A plot is made each |
hyperplanes |
A boolean. If TRUE, plot the hyperplanes obtained. |
limit.state.estimate |
A boolean. If TRUE, plot the estimate of the limit state. |
Details
updateLSVM allows to make an update of the classifier LSVM.
Value
An object of class matrix
containing the parameters of a set of hyperplanes
Note
The argument PLOTSVM is useful only in dimension 2.
Author(s)
Vincent Moutoussamy
References
-
R.T. Rockafellar:
Convex analysis
Princeton university press, 2015.
-
N. Bousquet, T. Klein and V. Moutoussamy :
Approximation of limit state surfaces in monotonic Monte Carlo settings
Submitted .
See Also
Examples
# A limit state function
f <- function(x){ sqrt(sum(x^2)) - sqrt(2)/2 }
# Creation of the data sets
n <- 200
X <- matrix(runif(2*n), nrow = n)
Y <- apply(X, MARGIN = 1, function(w){sign(f(w))})
## Not run:
model.A <- modelLSVM(X,Y, convexity = -1)
M <- 20
X.new <- matrix(runif(2*M), nrow = M)
Y.new <- apply(X.new, MARGIN = 1, function(w){ sign(f(w))})
X.new.S <- X.new[which(Y.new > 0), ]
Y.new.S <- Y.new[which(Y.new > 0)]
model.A.new <- updateLSVM(X.new.S, Y.new.S, X, Y,
model.A, convexity = -1, PLOTSVM = TRUE, step.plot.LSVM = 5)
## End(Not run)