UtoX {mistral} | R Documentation |
Iso-probabilistic transformation from U space to X space
Description
UtoX
performs as iso-probabilistic transformation from standardized space (U) to physical space (X) according to the NATAF transformation, which requires only to know the means, the standard deviations, the correlation matrix \rho(Xi,Xj) = \rho_{ij}
and the marginal distributions of Xi.
In standard space, all random variables are uncorrelated standard normal distributed variables whereas they are correlated and defined using the following distribution functions: Normal (or Gaussian), Lognormal, Uniform, Gumbel, Weibull and Gamma.
Usage
UtoX(U, input.margin, L0)
Arguments
U |
a matrix containing the realisation of all random variables in U-space |
input.margin |
A list containing one or more list defining the marginal distribution functions of all random variables to be used |
L0 |
the lower matrix of the Cholesky decomposition of correlation matrix R0 (result of |
Details
Supported distributions are :
NORMAL: distribution, defined by its mean and standard deviation
distX <- list(type="Norm", MEAN=0.0, STD=1.0, NAME="X1")
LOGNORMAL: distribution, defined by its internal parameters P1=meanlog and P2=sdlog (
plnorm
)distX <- list(type="Lnorm", P1=10.0, P2=2.0, NAME="X2")
UNIFORM: distribution, defined by its internal parameters P1=min and P2=max (
punif
)distX <- list(type="Unif",P1=2.0, P2=6.0, NAME="X3")
GUMBEL: distribution, defined by its internal parameters P1 and P2
distX <- list(type='Gumbel',P1=6.0, P2=2.0, NAME='X4')
WEIBULL: distribution, defined by its internal parameters P1=shape and P2=scale (
pweibull
)distX <- list(type='Weibull', P1=NULL, P2=NULL, NAME='X5')
GAMMA: distribution, defined by its internal parameters P1=shape and P2=scale (
pgamma
)distX <- list(type='Gamma', P1=6.0, P2=6.0, NAME='X6')
BETA: distribution, defined by its internal parameters P1=shape1 and P2=shapze2 (
pbeta
)distX <- list(type='Beta', P1=6.0, P2=6.0, NAME='X7')
Value
X |
a matrix containing the realisation of all random variables in X-space |
Author(s)
gilles DEFAUX, gilles.defaux@cea.fr
References
M. Lemaire, A. Chateauneuf and J. Mitteau. Structural reliability, Wiley Online Library, 2009
V. Dubourg, Meta-modeles adaptatifs pour l'analyse de fiabilite et l'optimisation sous containte fiabiliste, PhD Thesis, Universite Blaise Pascal - Clermont II,2011
See Also
ModifCorrMatrix
, ComputeDistributionParameter
Examples
Dim = 2
distX1 <- list(type='Norm', MEAN=0.0, STD=1.0, P1=NULL, P2=NULL, NAME='X1')
distX2 <- list(type='Norm', MEAN=0.0, STD=1.0, P1=NULL, P2=NULL, NAME='X2')
input.margin <- list(distX1,distX2)
input.Rho <- matrix( c(1.0, 0.5,
0.5, 1.0),nrow=Dim)
input.R0 <- ModifCorrMatrix(input.Rho)
L0 <- t(chol(input.R0))
lsf = function(U) {
X <- UtoX(U, input.margin, L0)
G <- 5.0 - 0.2*(X[1,]-X[2,])^2.0 - (X[1,]+X[2,])/sqrt(2.0)
return(G)
}
u0 <- as.matrix(c(1.0,-0.5))
lsf(u0)