MonotonicQuantileEstimation {mistral} | R Documentation |
Quantile estimation under monotonicity constraints
Description
Estimate a quantile with the constraints that the function is monotone
Usage
MonotonicQuantileEstimation(f,
inputDimension,
inputDistribution,
dir.monot,
N.calls,
p,
method,
X.input = NULL,
Y.input = NULL)
Arguments
f |
a failure fonction |
inputDimension |
dimension of the inputs |
inputDistribution |
a list of length ‘inputDimension’ which contains the name of the input distribution and their parameters. For the input "i", inputDistribution[[i]] = list("name_law",c(parameters1,..., parametersN)) |
dir.monot |
vector of size |
N.calls |
Number of calls to f allowed |
method |
there are four methods available. "MonteCarloWB" provides the empirical quantile estimator, "MonteCarloWB" provides the empirical quantile estimator as well as two bounds for the searched quantile, "Bounds" provides two bounds for a quantile from a set of points and "MonteCarloIS" provides an estimate of a quantile based on a sequential framework of simulation. |
p |
the probability associated to the quantile |
X.input |
a set of points |
Y.input |
value of f on X.input |
Details
MonotonicQuantileEstimation provides many methods to estimate a quantile under monotonicity constraints.
Value
An object of class list
containing the quantile as well as:
qm |
A lower bound of the quantile. |
qM |
A upperer bound of the quantile. |
q.hat |
An estimate of the quantile. |
Um |
A lower bounds of the probability obtained from the desing of experiments. |
UM |
An upper bounds of the probability obtained from the desing of experiments. |
XX |
Design of experiments |
YY |
Values of on XX |
Note
Inputs X.input and Y.input are useful only for method = "Bounds"
Author(s)
Vincent Moutoussamy
References
Bousquet, N. (2012) Accelerated monte carlo estimation of exceedance probabilities under monotonicity constraints. Annales de la Faculte des Sciences de Toulouse. XXI(3), 557-592.
Examples
## Not run:
inputDistribution <- list()
inputDistribution[[1]] <- list("norm",c(4,1))
inputDistribution[[2]] <- list("norm",c(0,1))
inputDimension <- length(inputDistribution)
dir.monot <- c(1, -1)
N.calls <- 80
f <- function(x){
return(x[1] - x[2])
}
probability <- 1e-2
trueQuantile <- qnorm(probability,
inputDistribution[[1]][[2]][1] - inputDistribution[[2]][[2]][1],
sqrt(inputDistribution[[1]][[2]][2] + inputDistribution[[1]][[2]][2]))
resQuantile <- MonotonicQuantileEstimation(f, inputDimension, inputDistribution,
dir.monot, N.calls, p = probability, method = "MonteCarloIS")
quantileEstimate <- resQuantile[[1]][N.calls, 3]
## End(Not run)