mvsn.mcmc {miscF} | R Documentation |
Estimate Parameters of a Multivariate Skew Normal Distribution Using the MCMC
Description
Use the MCMC to obtain estimate of parameters of a multivariate skew normal distribution.
Usage
mvsn.mcmc(Y, prior.Mu0=NULL, prior.Sigma0=NULL,
prior.muDelta0=NULL, prior.sigmaDelta0=NULL,
prior.H0=NULL, prior.P0=NULL,
nmcmc=10000, nburn=nmcmc/10, nthin=1, seed=100)
Arguments
Y |
a matrix of observations with one subject per row. |
prior.Mu0 |
mean vector of multivariate normal prior of the
parameter |
prior.Sigma0 |
variance matrix of multivariate normal prior of
the parameter |
prior.muDelta0 |
mean vector of normal prior of the diagonal elements of parameter |
prior.sigmaDelta0 |
standard deviation vector of normal prior of the diagonal
elements of parameter |
prior.H0 |
the inverse of scale matrix of Wishart prior of the inverse of
parameter |
prior.P0 |
the degrees of freedom of Wishart prior of the inverse of
parameter |
nmcmc |
number of iterations. The default value is 10000. |
nburn |
number of burn-in. The default value is |
nthin |
output every |
seed |
random seed. The default value is 100. |
Details
This function estimates the parameters of a multivariate skew normal distribution as in Sahu et al. 2003 using the MCMC.
Value
Mu |
a matrix of parameter |
Sigma |
a three dimensional array of parameter |
Delta |
a matrix of diagonal elements of parameter |
DIC |
DIC value. |
References
Sahu, Sujit K., Dipak K. Dey, and Marcia D. Branco. (2003) A new class of multivariate skew distributions with applications to Bayesian regression models. Canadian Journal of Statistics vol. 31, no. 2 129-150.
Examples
## Not run:
Mu <- rep(400, 2)
Sigma <- diag(c(40, 40))
D <- diag(c(-30, -30))
Y <- rmvsn(n=1000, D, Mu, Sigma)
mcmc <- mvsn.mcmc(Y)
## End(Not run)