miss.lm {misaem} | R Documentation |
Statistical Inference for Linear Regression Models with Missing Values
Description
This function is used to perform statistical inference for linear regression model with missing values, by algorithm EM.
Usage
miss.lm(formula, data, control = list(...), ...)
Arguments
formula |
an object of class " |
data |
an optional data frame containing the variables in the model. If not found in |
control |
a list of parameters for controlling the fitting process. For |
... |
arguments to be used to form the default control argument if it is not supplied directly. |
Value
An object of class "miss.lm
": a list with following components:
coefficients |
Estimated |
ll |
Observed log-likelihood. |
s.resid |
Estimated standard error for residuals. |
s.err |
Standard error for estimated parameters. |
mu.X |
Estimated |
Sig.X |
Estimated |
call |
the matched call. |
formula |
the formula supplied. |
Examples
# Generate complete data
set.seed(1)
mu.X <- c(1, 1)
Sigma.X <- matrix(c(1, 1, 1, 4), nrow = 2)
n <- 50
p <- 2
X.complete <- matrix(rnorm(n*p), nrow=n)%*%chol(Sigma.X) +
matrix(rep(mu.X,n), nrow=n, byrow = TRUE)
b <- c(2, 3, -1)
sigma.eps <- 0.25
y <- cbind(rep(1, n), X.complete) %*% b + rnorm(n, 0, sigma.eps)
# Add missing values
p.miss <- 0.10
patterns <- runif(n*p)<p.miss #missing completely at random
X.obs <- X.complete
X.obs[patterns] <- NA
# Estimate regression using EM
df.obs = data.frame(y,X.obs)
miss.list = miss.lm(y~., data=df.obs)
print(miss.list)
print(summary(miss.list))
summary(miss.list)$coef