miss.glm {misaem} | R Documentation |
Statistical Inference for Logistic Regression Models with Missing Values
Description
This function is used to perform statistical inference for logistic regression model with missing values, by algorithm SAEM.
Usage
miss.glm(formula, data, control = list(...), ...)
Arguments
formula |
an object of class " |
data |
an optional data frame containing the variables in the model. If not found in |
control |
a list of parameters for controlling the fitting process. For |
... |
arguments to be used to form the default control argument if it is not supplied directly. |
Value
An object of class "miss.glm
": a list with following components:
coefficients |
Estimated |
ll |
Observed log-likelihood. |
var.covar |
Variance-covariance matrix for estimated parameters. |
s.err |
Standard error for estimated parameters. |
mu.X |
Estimated |
Sig.X |
Estimated |
call |
the matched call. |
formula |
the formula supplied. |
Examples
# Generate dataset
N <- 100 # number of subjects
p <- 3 # number of explanatory variables
mu.star <- rep(0,p) # mean of the explanatory variables
Sigma.star <- diag(rep(1,p)) # covariance
beta.star <- c(1, 1, 0) # coefficients
beta0.star <- 0 # intercept
beta.true = c(beta0.star,beta.star)
X.complete <- matrix(rnorm(N*p), nrow=N)%*%chol(Sigma.star) +
matrix(rep(mu.star,N), nrow=N, byrow = TRUE)
p1 <- 1/(1+exp(-X.complete%*%beta.star-beta0.star))
y <- as.numeric(runif(N)<p1)
# Generate missingness
p.miss <- 0.10
patterns <- runif(N*p)<p.miss #missing completely at random
X.obs <- X.complete
X.obs[patterns] <- NA
df.obs = data.frame(y,X.obs)
# SAEM
miss.list = miss.glm(y~., data=df.obs, print_iter=FALSE,seed=100)
print(miss.list)
print(summary(miss.list))
summary(miss.list)$coef