itemfit {mirt} | R Documentation |
Item fit statistics
Description
Computes item-fit statistics for a variety of unidimensional and multidimensional models.
Poorly fitting items should be inspected with the empirical plots/tables
for unidimensional models, otherwise itemGAM
can be used to diagnose
where the functional form of the IRT model was misspecified, or models can be refit using
more flexible semi-parametric response models (e.g., itemtype = 'spline'
).
If the latent trait density was approximated (e.g., Davidian curves, Empirical histograms, etc)
then passing use_dentype_estimate = TRUE
will use the internally saved quadrature and
density components (where applicable). Currently, only S-X2 statistic supported for
mixture IRT models. Finally, where applicable the root mean-square error of approximation (RMSEA)
is reported to help gauge the magnitude of item misfit.
Usage
itemfit(
x,
fit_stats = "S_X2",
which.items = 1:extract.mirt(x, "nitems"),
na.rm = FALSE,
p.adjust = "none",
group.bins = 10,
group.size = NA,
group.fun = mean,
mincell = 1,
mincell.X2 = 2,
return.tables = FALSE,
pv_draws = 30,
boot = 1000,
boot_dfapprox = 200,
S_X2.plot = NULL,
S_X2.plot_raw.score = TRUE,
ETrange = c(-2, 2),
ETpoints = 11,
empirical.plot = NULL,
empirical.CI = 0.95,
empirical.poly.collapse = FALSE,
method = "EAP",
Theta = NULL,
par.strip.text = list(cex = 0.7),
par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col =
"black")),
auto.key = list(space = "right", points = FALSE, lines = TRUE),
...
)
Arguments
x |
a computed model object of class |
fit_stats |
a character vector indicating which fit statistics should be computed. Supported inputs are:
Note that 'S_X2' and 'Zh' cannot be computed when there are missing response data (i.e., will require multiple-imputation/row-removal techniques). |
which.items |
an integer vector indicating which items to test for fit. Default tests all possible items |
na.rm |
logical; remove rows with any missing values? This is required for methods such
as S-X2 because they require the "EAPsum" method from |
p.adjust |
method to use for adjusting all p-values for each respective item fit
statistic (see |
group.bins |
the number of bins to use for X2 and G2. For example,
setting |
group.size |
approximate size of each group to be used in calculating the |
group.fun |
function used when |
mincell |
the minimum expected cell size to be used in the S-X2 computations. Tables will be collapsed across items first if polytomous, and then across scores if necessary |
mincell.X2 |
the minimum expected cell size to be used in the X2 computations. Tables will be collapsed if polytomous, however if this condition can not be met then the group block will be omitted in the computations |
return.tables |
logical; return tables when investigating |
pv_draws |
number of plausible-value draws to obtain for PV_Q1 and PV_Q1* |
boot |
number of parametric bootstrap samples to create for PV_Q1* and X2* |
boot_dfapprox |
number of parametric bootstrap samples to create for the X2*_df statistic to approximate the scaling factor for X2* as well as the scaled degrees of freedom estimates |
S_X2.plot |
argument input is the same as |
S_X2.plot_raw.score |
logical; use the raw-score information in the plot in stead of the latent
trait scale score? Default is |
ETrange |
range of integration nodes for Stone's X2* statistic |
ETpoints |
number of integration nodes to use for Stone's X2* statistic |
empirical.plot |
a single numeric value or character of the item name indicating which
item to plot (via |
empirical.CI |
a numeric value indicating the width of the empirical confidence interval
ranging between 0 and 1 (default of 0 plots not interval). For example, a 95
interval would be plotted when |
empirical.poly.collapse |
logical; collapse polytomous item categories to for expected scoring
functions for empirical plots? Default is |
method |
type of factor score estimation method. See |
Theta |
a matrix of factor scores for each person used for statistics that require
empirical estimates. If supplied, arguments typically passed to |
par.strip.text |
plotting argument passed to |
par.settings |
plotting argument passed to |
auto.key |
plotting argument passed to |
... |
additional arguments to be passed to |
Author(s)
Phil Chalmers rphilip.chalmers@gmail.com
References
Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 29-51.
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Chalmers, R. P. & Ng, V. (2017). Plausible-Value Imputation Statistics for Detecting Item Misfit. Applied Psychological Measurement, 41, 372-387. doi:10.1177/0146621617692079
Drasgow, F., Levine, M. V., & Williams, E. A. (1985). Appropriateness measurement with polychotomous item response models and standardized indices. British Journal of Mathematical and Statistical Psychology, 38, 67-86.
Kang, T. & Chen, Troy, T. (2007). An investigation of the performance of the generalized S-X2 item-fit index for polytomous IRT models. ACT
McKinley, R., & Mills, C. (1985). A comparison of several goodness-of-fit statistics. Applied Psychological Measurement, 9, 49-57.
Orlando, M. & Thissen, D. (2000). Likelihood-based item fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24, 50-64.
Reise, S. P. (1990). A comparison of item- and person-fit methods of assessing model-data fit in IRT. Applied Psychological Measurement, 14, 127-137.
Stone, C. A. (2000). Monte Carlo Based Null Distribution for an Alternative Goodness-of-Fit Test Statistics in IRT Models. Journal of Educational Measurement, 37, 58-75.
Wright B. D. & Masters, G. N. (1982). Rating scale analysis. MESA Press.
Yen, W. M. (1981). Using simulation results to choose a latent trait model. Applied Psychological Measurement, 5, 245-262.
See Also
Examples
## Not run:
P <- function(Theta){exp(Theta^2 * 1.2 - 1) / (1 + exp(Theta^2 * 1.2 - 1))}
#make some data
set.seed(1234)
a <- matrix(rlnorm(20, meanlog=0, sdlog = .1),ncol=1)
d <- matrix(rnorm(20),ncol=1)
Theta <- matrix(rnorm(2000))
items <- rep('2PL', 20)
ps <- P(Theta)
baditem <- numeric(2000)
for(i in 1:2000)
baditem[i] <- sample(c(0,1), 1, prob = c(1-ps[i], ps[i]))
data <- cbind(simdata(a,d, 2000, items, Theta=Theta), baditem=baditem)
x <- mirt(data, 1)
raschfit <- mirt(data, 1, itemtype='Rasch')
fit <- itemfit(x)
fit
# p-value adjustment
itemfit(x, p.adjust='fdr')
# two different fit stats (with/without p-value adjustment)
itemfit(x, c('S_X2' ,'X2'), p.adjust='fdr')
itemfit(x, c('S_X2' ,'X2'))
# Conditional sum-score plot from S-X2 information
itemfit(x, S_X2.plot = 1) # good fit
itemfit(x, S_X2.plot = 2) # good fit
itemfit(x, S_X2.plot = 21) # bad fit
itemfit(x, 'X2') # just X2
itemfit(x, 'X2', method = 'ML') # X2 with maximum-likelihood estimates for traits
itemfit(x, group.bins=15, empirical.plot = 1, method = 'ML') #empirical item plot with 15 points
itemfit(x, group.bins=15, empirical.plot = 21, method = 'ML')
# PV and X2* statistics (parametric bootstrap stats not run to save time)
itemfit(x, 'PV_Q1')
if(interactive()) mirtCluster() # improve speed of bootstrap samples by running in parallel
# itemfit(x, 'PV_Q1*')
# itemfit(x, 'X2*') # Stone's 1993 statistic
# itemfit(x, 'X2*_df') # Stone's 2000 scaled statistic with df estimate
# empirical tables for X2 statistic
tabs <- itemfit(x, 'X2', return.tables=TRUE, which.items = 1)
tabs
#infit/outfit statistics. method='ML' agrees better with eRm package
itemfit(raschfit, 'infit', method = 'ML') #infit and outfit stats
#same as above, but inputting ML estimates instead (saves time for re-use)
Theta <- fscores(raschfit, method = 'ML')
itemfit(raschfit, 'infit', Theta=Theta)
itemfit(raschfit, empirical.plot=1, Theta=Theta)
itemfit(raschfit, 'X2', return.tables=TRUE, Theta=Theta, which.items=1)
# fit a new more flexible model for the mis-fitting item
itemtype <- c(rep('2PL', 20), 'spline')
x2 <- mirt(data, 1, itemtype=itemtype)
itemfit(x2)
itemplot(x2, 21)
anova(x, x2)
#------------------------------------------------------------
#similar example to Kang and Chen 2007
a <- matrix(c(.8,.4,.7, .8, .4, .7, 1, 1, 1, 1))
d <- matrix(rep(c(2.0,0.0,-1,-1.5),10), ncol=4, byrow=TRUE)
dat <- simdata(a,d,2000, itemtype = rep('graded', 10))
head(dat)
mod <- mirt(dat, 1)
itemfit(mod)
itemfit(mod, 'X2') # less useful given inflated Type I error rates
itemfit(mod, empirical.plot = 1)
itemfit(mod, empirical.plot = 1, empirical.poly.collapse=TRUE)
# collapsed tables (see mincell.X2) for X2 and G2
itemfit(mod, 'X2', return.tables = TRUE, which.items = 1)
mod2 <- mirt(dat, 1, 'Rasch')
itemfit(mod2, 'infit', method = 'ML')
# massive list of tables for S-X2
tables <- itemfit(mod, return.tables = TRUE)
#observed and expected total score patterns for item 1 (post collapsing)
tables$O[[1]]
tables$E[[1]]
# can also select specific items
# itemfit(mod, return.tables = TRUE, which.items=1)
# fit stats with missing data (run in parallel using all cores)
dat[sample(1:prod(dim(dat)), 100)] <- NA
raschfit <- mirt(dat, 1, itemtype='Rasch')
# use only valid data by removing rows with missing terms
itemfit(raschfit, c('S_X2', 'infit'), na.rm = TRUE)
# note that X2, G2, PV-Q1, and X2* do not require complete datasets
thetas <- fscores(raschfit, method = 'ML') # save for faster computations
itemfit(raschfit, c('X2', 'G2'), Theta=thetas)
itemfit(raschfit, empirical.plot=1, Theta=thetas)
itemfit(raschfit, 'X2', return.tables=TRUE, which.items=1, Theta=thetas)
## End(Not run)