coef-method {mirt} | R Documentation |
Extract raw coefs from model object
Description
Return a list (or data.frame) of raw item and group level coefficients. Note that while
the output to the console is rounded to three digits, the returned list of objects is not.
Hence, elements from cfs <- coef(mod); cfs[[1]]
will contain the non-rounded results (useful
for simulations).
Usage
## S4 method for signature 'SingleGroupClass'
coef(
object,
CI = 0.95,
printSE = FALSE,
rotate = "none",
Target = NULL,
IRTpars = FALSE,
rawug = FALSE,
as.data.frame = FALSE,
simplify = FALSE,
unique = FALSE,
verbose = TRUE,
...
)
Arguments
object |
an object of class |
CI |
the amount of converged used to compute confidence intervals; default is 95 percent confidence intervals |
printSE |
logical; print the standard errors instead of the confidence intervals? When
|
rotate |
see |
Target |
a dummy variable matrix indicting a target rotation pattern |
IRTpars |
logical; convert slope intercept parameters into traditional IRT parameters?
Only applicable to unidimensional models or models with simple structure (i.e., only one non-zero slope).
If a suitable ACOV estimate was computed in the fitted
model, and |
rawug |
logical; return the untransformed internal g and u parameters?
If |
as.data.frame |
logical; convert list output to a data.frame instead? |
simplify |
logical; if all items have the same parameter names (indicating they are of the same class) then they are collapsed to a matrix, and a list of length 2 is returned containing a matrix of item parameters and group-level estimates |
unique |
return the vector of uniquely estimated parameters |
verbose |
logical; allow information to be printed to the console? |
... |
additional arguments to be passed |
References
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
See Also
Examples
## Not run:
dat <- expand.table(LSAT7)
x <- mirt(dat, 1)
coef(x)
coef(x, IRTpars = TRUE)
coef(x, simplify = TRUE)
#with computed information matrix
x <- mirt(dat, 1, SE = TRUE)
coef(x)
coef(x, printSE = TRUE)
coef(x, as.data.frame = TRUE)
#two factors
x2 <- mirt(Science, 2)
coef(x2)
coef(x2, rotate = 'varimax')
## End(Not run)