cv.mimi {mimi} | R Documentation |
selection of the regularization parameters (lambda1 and lambda2) of the mimi function by cross-validation
Description
selection of the regularization parameters (lambda1 and lambda2) of the mimi function by cross-validation
Usage
cv.mimi(y, model = c("low-rank", "covariates"), var.type, x = NULL,
groups = NULL, N = 5, algo = c("mcgd", "bcgd"), thresh = 1e-05,
maxit = 100, max.rank = NULL, trace.it = F, parallel = F,
len = 15)
Arguments
y |
[matrix, data.frame] incomplete and mixed data frame (nxp) |
model |
either one of "groups", "covariates" or "low-rank", indicating which model should be fitted |
var.type |
vector of length p indicating types of y columns (gaussian, binomial, poisson) |
x |
[matrix, data.frame] covariate matrix (npxq) |
groups |
factor of length n indicating groups (optional) |
N |
[integer] number of cross-validation folds |
algo |
type of algorithm to use, either one of "bcgd" (small dimensions, gaussian and binomial variables) or "mcgd" (large dimensions, poisson variables) |
thresh |
[positive number] convergence threshold, default is 1e-5 |
maxit |
[integer] maximum number of iterations, default is 100 |
max.rank |
[integer] maximum rank of interaction matrix, default is 2 |
trace.it |
[boolean] whether information about convergence should be printed |
parallel |
[boolean] whether the N-fold cross-validation should be parallelized, default value is TRUE |
len |
[integer] the size of the grid |
Value
A list with the following elements
lambda1 |
regularization parameter estimated by cross-validation for nuclear norm penalty (interaction matrix) |
lambda2 |
regularization parameter estimated by cross-validation for l1 norm penalty (main effects) |
errors |
a table containing the prediction errors for all pairs of parameters |