predict.cv_misvm {mildsvm} | R Documentation |
Predict method for cv_misvm
object
Description
Predict method for cv_misvm
object
Usage
## S3 method for class 'cv_misvm'
predict(
object,
new_data,
type = c("class", "raw"),
layer = c("bag", "instance"),
new_bags = "bag_name",
...
)
Arguments
object |
An object of class |
new_data |
A data frame to predict from. This needs to have all of the features that the data was originally fitted with. |
type |
If |
layer |
If |
new_bags |
A character or character vector. Can specify a singular
character that provides the column name for the bag names in |
... |
Arguments passed to or from other methods. |
Value
A tibble with nrow(new_data)
rows. If type = 'class'
, the tibble
will have a column '.pred_class'. If type = 'raw'
, the tibble will have
a column '.pred'.
Author(s)
Sean Kent
Examples
mil_data <- generate_mild_df(
nbag = 10,
nsample = 20,
positive_degree = 3
)
df1 <- build_instance_feature(mil_data, seq(0.05, 0.95, length.out = 10))
mdl1 <- cv_misvm(x = df1[, 4:123], y = df1$bag_label,
bags = df1$bag_name, cost_seq = 2^(-2:2),
n_fold = 3, method = "heuristic")
predict(mdl1, new_data = df1, type = "raw", layer = "bag")
# summarize predictions at the bag layer
suppressWarnings(library(dplyr))
df1 %>%
bind_cols(predict(mdl1, df1, type = "class")) %>%
bind_cols(predict(mdl1, df1, type = "raw")) %>%
distinct(bag_name, bag_label, .pred_class, .pred)