mies_survival_plus {miesmuschel} | R Documentation |
Choose Survivors According to the "Mu + Lambda" ("Plus") Strategy
Description
Choose survivors during a MIES iteration using the "Plus" survival strategy, i.e.
combining all alive individuals from the latest and from prior generations indiscriminately and
choosing survivors using a survival Selector
operator.
When mu
is greater than the number of alive individuals, then all individuals survive.
Usage
mies_survival_plus(inst, mu, survival_selector, ...)
Arguments
inst |
( |
mu |
( |
survival_selector |
( |
... |
(any) |
Value
invisible data.table
: The value of inst$archive$data
, changed
in-place with eol
set to the current generation for non-survivors.
See Also
Other mies building blocks:
mies_evaluate_offspring()
,
mies_generate_offspring()
,
mies_get_fitnesses()
,
mies_init_population()
,
mies_select_from_archive()
,
mies_step_fidelity()
,
mies_survival_comma()
Examples
set.seed(1)
library("bbotk")
lgr::threshold("warn")
# Define the objective to optimize
objective <- ObjectiveRFun$new(
fun = function(xs) {
z <- exp(-xs$x^2 - xs$y^2) + 2 * exp(-(2 - xs$x)^2 - (2 - xs$y)^2)
list(Obj = z)
},
domain = ps(x = p_dbl(-2, 4), y = p_dbl(-2, 4)),
codomain = ps(Obj = p_dbl(tags = "maximize"))
)
# Get a new OptimInstance
oi <- OptimInstanceSingleCrit$new(objective,
terminator = trm("evals", n_evals = 100)
)
mies_init_population(inst = oi, mu = 3)
offspring = generate_design_random(oi$search_space, 2)$data
mies_evaluate_offspring(oi, offspring = offspring)
# State before: different generations of individuals. Alive individuals have
# 'eol' set to 'NA'.
oi$archive
s = sel("best")
s$prime(oi$search_space)
mies_survival_plus(oi, mu = 3, survival_selector = s)
# sel("best") lets only the three best individuals survive.
# The others have 'eol = 2' (the current generation).
oi$archive