dict_scalors_nondom {miesmuschel} | R Documentation |
Nondominated Sorting Scalor
Description
Scalor
that returns a the rank of the pareto-front in nondominated sorting as scale. Higher ranks
indocate higher fitnesses and therefore "better" individuals.
Configuration Parameters
-
epsilon
-
nadir
-
jitter
-
scale_output
-
tiebreak
Supported Operand Types
Supported Domain
classes are: p_lgl
('ParamLgl'), p_int
('ParamInt'), p_dbl
('ParamDbl'), p_fct
('ParamFct')
Dictionary
This Scalor
can be created with the short access form scl()
(scls()
to get a list), or through the the dictionary
dict_scalors
in the following way:
# preferred: scl("nondom") scls("nondom") # takes vector IDs, returns list of Scalors # long form: dict_scalors$get("nondom")
Super classes
miesmuschel::MiesOperator
-> miesmuschel::Scalor
-> ScalorNondom
Methods
Public methods
Inherited methods
Method new()
Initialize the ScalorNondom
object.
Usage
ScalorNondom$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
ScalorNondom$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
See Also
Other scalors:
Scalor
,
dict_scalors_aggregate
,
dict_scalors_domcount
,
dict_scalors_fixedprojection
,
dict_scalors_hypervolume
,
dict_scalors_one
,
dict_scalors_proxy
,
dict_scalors_single
Examples
so = scl("nondom")
p = ps(x = p_dbl(-5, 5))
# dummy data; note that ScalorNondom does not depend on data content
data = data.frame(x = rep(0, 5))
fitnesses = matrix(c(1, 5, 2, 3, 0, 3, 1, 0, 10, 8), ncol = 2)
so$prime(p)
so$operate(data, fitnesses)