dict_mutators_erase {miesmuschel} | R Documentation |
Uniform Sample Mutator
Description
"Mutates" individuals by forgetting the current value and sampling new individuals from scratch.
Since the information loss is very high, this should in most cases be combined with MutatorCmpMaybe
.
Configuration Parameters
-
initializer
::function
Function that generates the initial population as aDesign
object, with argumentsparam_set
andn
, functioning likeparadox::generate_design_random
orparadox::generate_design_lhs
. This is equivalent to theinitializer
parameter ofmies_init_population()
, see there for more information. Initialized togenerate_design_random()
.
Supported Operand Types
Supported Domain
classes are: p_lgl
('ParamLgl'), p_int
('ParamInt'), p_dbl
('ParamDbl'), p_fct
('ParamFct')
Dictionary
This Mutator
can be created with the short access form mut()
(muts()
to get a list), or through the the dictionary
dict_mutators
in the following way:
# preferred: mut("erase") muts("erase") # takes vector IDs, returns list of Mutators # long form: dict_mutators$get("erase")
Super classes
miesmuschel::MiesOperator
-> miesmuschel::Mutator
-> MutatorErase
Methods
Public methods
Inherited methods
Method new()
Initialize the MutatorErase
object.
Usage
MutatorErase$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
MutatorErase$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
See Also
Other mutators:
Mutator
,
MutatorDiscrete
,
MutatorNumeric
,
OperatorCombination
,
dict_mutators_cmpmaybe
,
dict_mutators_gauss
,
dict_mutators_maybe
,
dict_mutators_null
,
dict_mutators_proxy
,
dict_mutators_sequential
,
dict_mutators_unif
Examples
set.seed(1)
mer = mut("erase")
p = ps(x = p_lgl(), y = p_fct(c("a", "b", "c")), z = p_dbl(0, 1))
data = data.frame(x = rep(TRUE, 5), y = rep("a", 5),
z = seq(0, 1, length.out = 5),
stringsAsFactors = FALSE) # necessary for R <= 3.6
mer$prime(p)
mer$operate(data)