weights_table {midasr} | R Documentation |
Create a weight function selection table for MIDAS regression model
Description
Creates a weight function selection table for MIDAS regression model with given information criteria and weight functions.
Usage
weights_table(
formula,
data,
start = NULL,
IC = c("AIC", "BIC"),
test = c("hAh_test"),
Ofunction = "optim",
weight_gradients = NULL,
...
)
Arguments
formula |
the formula for MIDAS regression, the lag selection is performed for the last MIDAS lag term in the formula |
data |
a list containing data with mixed frequencies |
start |
the starting values for optimisation |
IC |
the information criteria which to compute |
test |
the names of statistical tests to perform on restricted model, p-values are reported in the columns of model selection table |
Ofunction |
see midasr |
weight_gradients |
see midas_r |
... |
additional parameters to optimisation function, see midas_r |
Details
This function estimates models sequentially increasing the midas lag from kmin
to kmax
of the last term of the given formula
Value
a midas_r_ic_table
object which is the list with the following elements:
table |
the table where each row contains calculated information criteria for both restricted and unrestricted MIDAS regression model with given lag structure |
candlist |
the list containing fitted models |
IC |
the argument IC |
Author(s)
Virmantas Kvedaras, Vaidotas Zemlys
Examples
data("USunempr")
data("USrealgdp")
y <- diff(log(USrealgdp))
x <- window(diff(USunempr),start=1949)
trend <- 1:length(y)
mwr <- weights_table(y~trend+fmls(x,12,12,nealmon),
start=list(x=list(nealmon=rep(0,3),
nbeta=c(1,1,1,0))))
mwr