| nealmon {midasr} | R Documentation |
Normalized Exponential Almon lag MIDAS coefficients
Description
Calculate normalized exponential Almon lag coefficients given the parameters and required number of coefficients.
Usage
nealmon(p, d, m)
Arguments
p |
parameters for Almon lag |
d |
number of the coefficients |
m |
the frequency, currently ignored. |
Details
Given unrestricted MIDAS regression
y_t=\sum_{h=0}^d\theta_{h}x_{tm-h}+\mathbf{z_t}\beta+u_t
normalized exponential Almon lag restricts the coefficients theta_h in the following way:
\theta_{h}=\delta\frac{\exp(\lambda_1(h+1)+\dots+\lambda_r(h+1)^r)}{\sum_{s=0}^d\exp(\lambda_1(s+1)+\dots+\lambda_r(h+1)^r)}
The parameter \delta should be the first element in vector p. The degree of the polynomial is then decided by the number of the remaining parameters.
Value
vector of coefficients
Author(s)
Virmantas Kvedaras, Vaidotas Zemlys
Examples
##Load data
data("USunempr")
data("USrealgdp")
y <- diff(log(USrealgdp))
x <- window(diff(USunempr),start=1949)
t <- 1:length(y)
midas_r(y~t+fmls(x,11,12,nealmon),start=list(x=c(0,0,0)))
[Package midasr version 0.8 Index]