midas_mmm_sim {midasr} | R Documentation |
Simulate MMM MIDAS regression model
Description
Simulate MMM MIDAS regression model
Usage
midas_mmm_sim(
n,
m,
theta,
intercept,
pmmm,
ar.x,
ar.y,
rand.gen = rnorm,
n.start = NA,
...
)
Arguments
n |
number of observations to simulate. |
m |
integer, frequency ratio |
theta |
vector, restriction coefficients for high frequency variable |
intercept |
vector of length 1, intercept for the model. |
pmmm |
vector of length 2, slope for the MMM term and MMM parameter |
ar.x |
vector, AR parameters for simulating high frequency variable |
ar.y |
vector, AR parameters for AR part of the model |
rand.gen |
function, a function for generating the regression innovations, default is |
n.start |
integer, length of a 'burn-in' period. If NA, the default, a reasonable value is computed. |
... |
additional parameters to rand.gen |
Value
a list
Examples
nnbeta <- function(p, k) nbeta(c(1,p),k)
dgp <- midas_mmm_sim(250, m = 12, theta = nnbeta(c(2, 4), 24),
intercept = c(1), pmmm = c(1.5, 1),
ar.x = 0.9, ar.y = 0.5, n.start = 100)
z <- cbind(1, mls(dgp$y, 1:2, 1))
colnames(z) <- c("Intercept", "y1", "y2")
X <- mls(dgp$x, 0:23, 12)
mmm_mod <- midas_mmm_plain(dgp$y, X, z, nnbeta,
start_mmm = c(1.5, 1),
start_x = c(2, 4), start_z=c(1, 0.5, 0))
coef(mmm_mod)
[Package midasr version 0.8 Index]