hAh_test {midasr} | R Documentation |
Test restrictions on coefficients of MIDAS regression
Description
Perform a test whether the restriction on MIDAS regression coefficients holds.
Usage
hAh_test(x)
Arguments
x |
MIDAS regression model with restricted coefficients, estimated with |
Details
Given MIDAS regression:
y_t=\sum_{j=0}^k\sum_{i=0}^{m-1}\theta_{jm+i} x_{(t-j)m-i}+u_t
test the null hypothesis that the following restriction holds:
\theta_h=g(h,\lambda),
where h=0,...,(k+1)m
.
Value
a htest
object
Author(s)
Virmantas Kvedaras, Vaidotas Zemlys
References
Kvedaras V., Zemlys, V. Testing the functional constraints on parameters in regressions with variables of different frequency Economics Letters 116 (2012) 250-254
See Also
hAhr_test
Examples
##The parameter function
theta_h0 <- function(p, dk, ...) {
i <- (1:dk-1)
(p[1] + p[2]*i)*exp(p[3]*i + p[4]*i^2)
}
##Generate coefficients
theta0 <- theta_h0(c(-0.1,0.1,-0.1,-0.001),4*12)
##Plot the coefficients
plot(theta0)
##Generate the predictor variable
set.seed(13)
xx <- ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12)
##Simulate the response variable
y <- midas_sim(500, xx, theta0)
x <- window(xx, start=start(y))
##Fit restricted model
mr <- midas_r(y~fmls(x,4*12-1,12,theta_h0)-1,list(y=y,x=x),
start=list(x=c(-0.1,0.1,-0.1,-0.001)))
##Perform test (the expected result should be the acceptance of null)
hAh_test(mr)
##Fit using gradient function
##The gradient function
theta_h0_gradient<-function(p, dk,...) {
i <- (1:dk-1)
a <- exp(p[3]*i + p[4]*i^2)
cbind(a, a*i, a*i*(p[1]+p[2]*i), a*i^2*(p[1]+p[2]*i))
}
mr <- midas_r(y~fmls(x,4*12-1,12,theta_h0)-1,list(y=y,x=x),
start=list(x=c(-0.1,0.1,-0.1,-0.001)),
weight_gradients=list())
##The test will use an user supplied gradient of weight function. See the
##help of midas_r on how to supply the gradient.
hAh_test(mr)
[Package midasr version 0.8 Index]