gb {midasml} | R Documentation |
Gegenbauer polynomials shifted to [a,b]
Description
For a given set of points in X, computes the orthonormal Gegenbauer polynomials basis of L2 [a,b] for a given degree and \alpha
parameter. The Gegenbauer polynomials are a special case of more general Jacobi polynomials. In turn, you may get Legendre polynomials from Gegenbauer by setting \alpha
= 0, or Chebychev's polynomials
by setting \alpha
= 1/2 or -1/2.
Usage
gb(degree, alpha, a = 0, b = 1, jmax = NULL, X = NULL)
Arguments
degree |
polynomial degree. |
alpha |
Gegenbauer polynomials parameter. |
a |
lower shift value (default - 0). |
b |
upper shift value (default - 1). |
jmax |
number of high-frequency lags. |
X |
optional evaluation grid vector. |
Value
Psi weight matrix with Gegenbauer functions upto degree
.
Author(s)
Jonas Striaukas
Examples
degree <- 3
alpha <- 1
jmax <- 66
gb(degree = degree, alpha = alpha, a = 0, b = 1, jmax = jmax)
[Package midasml version 0.1.10 Index]