| trans_venn {microeco} | R Documentation | 
Create trans_venn object for the Venn diagram, petal plot and UpSet plot.
Description
This class is a wrapper for a series of intersection analysis related methods, including 2- to 5-way venn diagram, more than 5-way petal or UpSet plot and intersection transformations based on David et al. (2012) <doi:10.1128/AEM.01459-12>.
Methods
Public methods
Method new()
Usage
trans_venn$new(dataset, ratio = NULL, name_joint = "&")
Arguments
- dataset
- the object of - microtableclass or a matrix-like table (data.frame or matrix object). If dataset is a matrix-like table, features must be rows.
- ratio
- default NULL; NULL, "numratio" or "seqratio"; "numratio": calculate the percentage of feature number; "seqratio": calculate the percentage of feature abundance; NULL: no additional percentage. 
- name_joint
- default "&"; the joint mark for generating multi-sample names. 
Returns
data_details and data_summary stored in the object.
Examples
\donttest{
data(dataset)
t1 <- dataset$merge_samples(use_group = "Group")
t1 <- trans_venn$new(dataset = t1, ratio = "numratio")
}
Method plot_venn()
Plot venn diagram.
Usage
trans_venn$plot_venn( color_circle = RColorBrewer::brewer.pal(8, "Dark2"), fill_color = TRUE, text_size = 4.5, text_name_size = 6, text_name_position = NULL, alpha = 0.3, linesize = 1.1, petal_plot = FALSE, petal_color = "#BEAED4", petal_color_center = "#BEBADA", petal_a = 4, petal_r = 1, petal_use_lim = c(-12, 12), petal_center_size = 40, petal_move_xy = 4, petal_move_k = 2.3, petal_move_k_count = 1.3, petal_text_move = 40, other_text_show = NULL, other_text_position = c(2, 2), other_text_size = 5 )
Arguments
- color_circle
- default - RColorBrewer::brewer.pal(8, "Dark2"); color pallete.
- fill_color
- default TRUE; whether fill the area color. 
- text_size
- default 4.5; text size in plot. 
- text_name_size
- default 6; name size in plot. 
- text_name_position
- default NULL; name position in plot. 
- alpha
- default .3; alpha for transparency. 
- linesize
- default 1.1; cycle line size. 
- petal_plot
- default FALSE; whether use petal plot. 
- petal_color
- default "#BEAED4"; color of the petals; If petal_color only has one color value, all the petals will be assigned with this color value. If petal_color has multiple colors, and the number of color values is smaller than the petal number, the function can append more colors automatically with the color interpolation. 
- petal_color_center
- default "#BEBADA"; color of the center in the petal plot. 
- petal_a
- default 4; the length of the ellipse. 
- petal_r
- default 1; scaling up the size of the ellipse. 
- petal_use_lim
- default c(-12, 12); the width of the plot. 
- petal_center_size
- default 40; petal center circle size. 
- petal_move_xy
- default 4; the distance of text to circle. 
- petal_move_k
- default 2.3; the distance of title to circle. 
- petal_move_k_count
- default 1.3; the distance of data text to circle. 
- petal_text_move
- default 40; the distance between two data text. 
- other_text_show
- default NULL; other characters used to show in the plot. 
- other_text_position
- default c(1, 1); the text position for text in - other_text_show.
- other_text_size
- default 5; the text size for text in - other_text_show.
Returns
ggplot.
Examples
\donttest{
t1$plot_venn()
}
Method plot_bar()
Plot the intersections using histogram, i.e. UpSet plot. Especially useful when samples > 5.
Usage
trans_venn$plot_bar( left_plot = TRUE, sort_samples = FALSE, up_y_title = "Intersection size", up_y_title_size = 15, up_y_text_size = 8, up_bar_fill = "grey70", bottom_y_text_size = 12, bottom_height = 1, bottom_point_size = 3, bottom_point_color = "black", bottom_background_fill = "grey95", left_width = 0.3, left_bar_fill = "grey70", left_x_text_size = 10, left_background_fill = "grey95" )
Arguments
- left_plot
- default TRUE; whether add the left bar plot to show the feature number of each sample. 
- sort_samples
- default FALSE; - TRUEis used to sort samples according to the number of features in each sample.- FALSEmeans the sample order is same with that in sample_table of the raw dataset.
- up_y_title
- default "Intersection set"; y axis title of upper plot. 
- up_y_title_size
- default 15; y axis title size of upper plot. 
- up_y_text_size
- default 4; y axis text size of upper plot. 
- up_bar_fill
- default "grey70"; bar fill color of upper plot. 
- bottom_y_text_size
- default 12; y axis text size, i.e. sample name size, of bottom sample plot. 
- bottom_height
- default 1; bottom plot height relative to the upper bar plot. 1 represents the height of bottom plot is same with the upper bar plot. 
- bottom_point_size
- default 3; point size of bottom plot. 
- bottom_point_color
- default "black"; point color of bottom plot. 
- bottom_background_fill
- default "grey95"; fill color for the striped background in the bottom sample plot. 
- left_width
- default 0.3; left bar plot width relative to the right bottom plot. 
- left_bar_fill
- default "grey70"; fill color for the left bar plot presenting feature number. 
- left_x_text_size
- default 10; x axis text size of the left bar plot. 
- left_background_fill
- default "grey95"; fill color for the striped background in the left plot. 
Returns
a ggplot2 object.
Examples
\donttest{
t2 <- t1$plot_bar()
}
Method trans_comm()
Transform intersection result to community-like microtable object for further composition analysis.
Usage
trans_venn$trans_comm(use_frequency = TRUE)
Arguments
- use_frequency
- default TRUE; whether only use OTUs occurrence frequency, i.e. presence/absence data; if FALSE, use abundance data. 
Returns
a new microtable class.
Examples
\donttest{
t2 <- t1$trans_comm(use_frequency = TRUE)
}
Method print()
Print the trans_venn object.
Usage
trans_venn$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_venn$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
Examples
## ------------------------------------------------
## Method `trans_venn$new`
## ------------------------------------------------
data(dataset)
t1 <- dataset$merge_samples(use_group = "Group")
t1 <- trans_venn$new(dataset = t1, ratio = "numratio")
## ------------------------------------------------
## Method `trans_venn$plot_venn`
## ------------------------------------------------
t1$plot_venn()
## ------------------------------------------------
## Method `trans_venn$plot_bar`
## ------------------------------------------------
t2 <- t1$plot_bar()
## ------------------------------------------------
## Method `trans_venn$trans_comm`
## ------------------------------------------------
t2 <- t1$trans_comm(use_frequency = TRUE)