trans_nullmodel {microeco} | R Documentation |
Create trans_nullmodel
object for phylogeny- and taxonomy-based null model analysis.
Description
This class is a wrapper for a series of null model related approaches, including the mantel correlogram analysis of phylogenetic signal, beta nearest taxon index (betaNTI), beta net relatedness index (betaNRI), NTI, NRI and RCbray calculations; See Stegen et al. (2013) <10.1038/ismej.2013.93> and Liu et al. (2017) <doi:10.1038/s41598-017-17736-w> for the algorithms and applications.
Methods
Public methods
Method new()
Usage
trans_nullmodel$new( dataset = NULL, filter_thres = 0, taxa_number = NULL, group = NULL, select_group = NULL, env_cols = NULL, add_data = NULL, complete_na = FALSE )
Arguments
dataset
the object of
microtable
Class.filter_thres
default 0; the relative abundance threshold.
taxa_number
default NULL; how many taxa the user want to keep, if provided, filter_thres parameter will be forcible invalid.
group
default NULL; which column name in sample_table is selected as the group for the following selection.
select_group
default NULL; one or more elements in
group
, used to select samples.env_cols
default NULL; number or name vector to select the environmental data in dataset$sample_table.
add_data
default NULL; provide environmental data table additionally.
complete_na
default FALSE; whether fill the NA in environmental data based on the method in mice package.
Returns
data_comm
and data_tree
in object.
Examples
data(dataset) data(env_data_16S) t1 <- trans_nullmodel$new(dataset, filter_thres = 0.0005, add_data = env_data_16S)
Method cal_mantel_corr()
Calculate mantel correlogram.
Usage
trans_nullmodel$cal_mantel_corr( use_env = NULL, break.pts = seq(0, 1, 0.02), cutoff = FALSE, ... )
Arguments
use_env
default NULL; numeric or character vector to select env_data; if provide multiple variables or NULL, use PCA (principal component analysis) to reduce dimensionality.
break.pts
default seq(0, 1, 0.02); see break.pts parameter in
mantel.correlog
ofvegan
package.cutoff
default FALSE; see cutoff parameter in
mantel.correlog
....
parameters pass to
mantel.correlog
.
Returns
res_mantel_corr in object.
Examples
\dontrun{ t1$cal_mantel_corr(use_env = "pH") }
Method plot_mantel_corr()
Plot mantel correlogram.
Usage
trans_nullmodel$plot_mantel_corr(point_shape = 22, point_size = 3)
Arguments
point_shape
default 22; the number for selecting point shape type; see
ggplot2
manual for the number meaning.point_size
default 3; the point size.
Returns
ggplot.
Examples
\dontrun{ t1$plot_mantel_corr() }
Method cal_betampd()
Calculate betaMPD (mean pairwise distance). Same with picante::comdist
function, but faster.
Usage
trans_nullmodel$cal_betampd(abundance.weighted = TRUE)
Arguments
abundance.weighted
default TRUE; whether use abundance-weighted method.
Returns
res_betampd in object.
Examples
\donttest{ t1$cal_betampd(abundance.weighted = TRUE) }
Method cal_betamntd()
Calculate betaMNTD (mean nearest taxon distance). Same with picante::comdistnt
package, but faster.
Usage
trans_nullmodel$cal_betamntd( abundance.weighted = TRUE, exclude.conspecifics = FALSE, use_iCAMP = FALSE, use_iCAMP_force = TRUE, iCAMP_tempdir = NULL, ... )
Arguments
abundance.weighted
default TRUE; whether use abundance-weighted method.
exclude.conspecifics
default FALSE; see
exclude.conspecifics
parameter incomdistnt
function ofpicante
package.use_iCAMP
default FALSE; whether use
bmntd.big
function ofiCAMP
package to calculate betaMNTD. This method can store the phylogenetic distance matrix on the disk to lower the memory spending and perform the calculation parallelly.use_iCAMP_force
default FALSE; whether use
bmntd.big
function ofiCAMP
package automatically when the feature number is large.iCAMP_tempdir
default NULL; the temporary directory used to place the large tree file; If NULL; use the system user tempdir.
...
paremeters pass to
iCAMP::pdist.big
function.
Returns
res_betamntd in object.
Examples
\donttest{ t1$cal_betamntd(abundance.weighted = TRUE) }
Method cal_ses_betampd()
Calculate standardized effect size of betaMPD, i.e. beta net relatedness index (betaNRI).
Usage
trans_nullmodel$cal_ses_betampd( runs = 1000, null.model = c("taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool", "independentswap", "trialswap")[1], abundance.weighted = TRUE, iterations = 1000 )
Arguments
runs
default 1000; simulation runs.
null.model
default "taxa.labels"; The available options include "taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool", "independentswap"and "trialswap"; see
null.model
parameter ofses.mntd
function inpicante
package for the algorithm details.abundance.weighted
default TRUE; whether use weighted abundance.
iterations
default 1000; iteration number for part null models to perform; see iterations parameter of
picante::randomizeMatrix
function.
Returns
res_ses_betampd in object.
Examples
\dontrun{ # only run 50 times for the example; default 1000 t1$cal_ses_betampd(runs = 50, abundance.weighted = TRUE) }
Method cal_ses_betamntd()
Calculate standardized effect size of betaMNTD, i.e. beta nearest taxon index (betaNTI).
Usage
trans_nullmodel$cal_ses_betamntd( runs = 1000, null.model = c("taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool", "independentswap", "trialswap")[1], abundance.weighted = TRUE, exclude.conspecifics = FALSE, use_iCAMP = FALSE, use_iCAMP_force = TRUE, iCAMP_tempdir = NULL, nworker = 2, iterations = 1000 )
Arguments
runs
default 1000; simulation number of null model.
null.model
default "taxa.labels"; The available options include "taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool", "independentswap"and "trialswap"; see
null.model
parameter ofses.mntd
function inpicante
package for the algorithm details.abundance.weighted
default TRUE; whether use abundance-weighted method.
exclude.conspecifics
default FALSE; see
comdistnt
in picante package.use_iCAMP
default FALSE; whether use bmntd.big function of iCAMP package to calculate betaMNTD. This method can store the phylogenetic distance matrix on the disk to lower the memory spending and perform the calculation parallelly.
use_iCAMP_force
default FALSE; whether to make use_iCAMP to be TRUE when the feature number is large.
iCAMP_tempdir
default NULL; the temporary directory used to place the large tree file; If NULL; use the system user tempdir.
nworker
default 2; the CPU thread number.
iterations
default 1000; iteration number for part null models to perform; see iterations parameter of
picante::randomizeMatrix
function.
Returns
res_ses_betamntd in object.
Examples
\dontrun{ # only run 50 times for the example; default 1000 t1$cal_ses_betamntd(runs = 50, abundance.weighted = TRUE, exclude.conspecifics = FALSE) }
Method cal_rcbray()
Calculate Bray–Curtis-based Raup–Crick (RCbray) <doi: 10.1890/ES10-00117.1>.
Usage
trans_nullmodel$cal_rcbray( runs = 1000, verbose = TRUE, null.model = "independentswap" )
Arguments
runs
default 1000; simulation runs.
verbose
default TRUE; whether show the calculation process message.
null.model
default "independentswap"; see more available options in
randomizeMatrix
function ofpicante
package.
Returns
res_rcbray in object.
Examples
\dontrun{ # only run 50 times for the example; default 1000 t1$cal_rcbray(runs = 50) }
Method cal_process()
Infer the ecological processes according to ses.betaMNTD/ses.betaMPD and rcbray.
Usage
trans_nullmodel$cal_process(use_betamntd = TRUE, group = NULL)
Arguments
use_betamntd
default TRUE; whether use ses.betaMNTD; if false, use ses.betaMPD.
group
default NULL; a column name in sample_table of microtable object. If provided, the analysis will be performed for each group instead of the whole.
Returns
res_process in object.
Examples
\dontrun{ t1$cal_process(use_betamntd = TRUE) }
Method cal_NRI()
Calculates Nearest Relative Index (NRI), equivalent to -1 times the standardized effect size of MPD.
Usage
trans_nullmodel$cal_NRI( null.model = "taxa.labels", abundance.weighted = FALSE, runs = 999, ... )
Arguments
null.model
default "taxa.labels"; Null model to use; see
null.model
parameter inses.mpd
function ofpicante
package for available options.abundance.weighted
default FALSE; Should mean nearest relative distances for each species be weighted by species abundance?
runs
default 999; Number of randomizations.
...
paremeters pass to ses.mpd function in picante package.
Returns
res_NRI in object, equivalent to -1 times ses.mpd.
Examples
\donttest{ # only run 50 times for the example; default 999 t1$cal_NRI(null.model = "taxa.labels", abundance.weighted = FALSE, runs = 50) }
Method cal_NTI()
Calculates Nearest Taxon Index (NTI), equivalent to -1 times the standardized effect size of MNTD.
Usage
trans_nullmodel$cal_NTI( null.model = "taxa.labels", abundance.weighted = FALSE, runs = 999, ... )
Arguments
null.model
default "taxa.labels"; Null model to use; see
null.model
parameter inses.mntd
function ofpicante
package for available options.abundance.weighted
default FALSE; Should mean nearest taxon distances for each species be weighted by species abundance?
runs
default 999; Number of randomizations.
...
paremeters pass to
ses.mntd
function inpicante
package.
Returns
res_NTI in object, equivalent to -1 times ses.mntd.
Examples
\donttest{ # only run 50 times for the example; default 999 t1$cal_NTI(null.model = "taxa.labels", abundance.weighted = TRUE, runs = 50) }
Method cal_Cscore()
Calculates the (normalised) mean number of checkerboard combinations (C-score) using C.score
function in bipartite
package.
Usage
trans_nullmodel$cal_Cscore(by_group = NULL, ...)
Arguments
by_group
default NULL; one column name or number in sample_table; calculate C-score for different groups separately.
...
paremeters pass to
bipartite::C.score
function.
Returns
vector.
Examples
\dontrun{ t1$cal_Cscore(normalise = FALSE) t1$cal_Cscore(by_group = "Group", normalise = FALSE) }
Method cal_NST()
Calculate normalized stochasticity ratio (NST) based on the NST
package.
Usage
trans_nullmodel$cal_NST(method = "tNST", group, ...)
Arguments
method
default "tNST";
'tNST'
or'pNST'
. See the help document oftNST
orpNST
function inNST
package for more details.group
a colname of
sample_table
in microtable object; the function can select the data from sample_table to generate a one-column (n x 1) matrix and provide it to the group parameter oftNST
orpNST
function....
paremeters pass to
NST::tNST
orNST::pNST
function; see the document of corresponding function for more details.
Returns
res_NST stored in the object.
Examples
\dontrun{ t1$cal_NST(group = "Group", dist.method = "bray", output.rand = TRUE, SES = TRUE) }
Method cal_NST_test()
Test the significance of NST difference between each pair of groups.
Usage
trans_nullmodel$cal_NST_test(method = "nst.boot", ...)
Arguments
method
default "nst.boot"; "nst.boot" or "nst.panova"; see
NST::nst.boot
function orNST::nst.panova
function for the details....
paremeters pass to NST::nst.boot when method = "nst.boot" or NST::nst.panova when method = "nst.panova".
Returns
list. See the Return part of NST::nst.boot
function or NST::nst.panova
function in NST package.
Examples
\dontrun{ t1$cal_NST_test() }
Method cal_NST_convert()
Convert NST paired long format table to symmetric matrix form.
Usage
trans_nullmodel$cal_NST_convert(column = 10)
Arguments
column
default 10; which column is selected for the conversion. See the columns of
res_NST$index.pair
stored in the object.
Returns
symmetric matrix.
Examples
\dontrun{ t1$cal_NST_convert(column = 10) }
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_nullmodel$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
## ------------------------------------------------
## Method `trans_nullmodel$new`
## ------------------------------------------------
data(dataset)
data(env_data_16S)
t1 <- trans_nullmodel$new(dataset, filter_thres = 0.0005, add_data = env_data_16S)
## ------------------------------------------------
## Method `trans_nullmodel$cal_mantel_corr`
## ------------------------------------------------
## Not run:
t1$cal_mantel_corr(use_env = "pH")
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$plot_mantel_corr`
## ------------------------------------------------
## Not run:
t1$plot_mantel_corr()
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$cal_betampd`
## ------------------------------------------------
t1$cal_betampd(abundance.weighted = TRUE)
## ------------------------------------------------
## Method `trans_nullmodel$cal_betamntd`
## ------------------------------------------------
t1$cal_betamntd(abundance.weighted = TRUE)
## ------------------------------------------------
## Method `trans_nullmodel$cal_ses_betampd`
## ------------------------------------------------
## Not run:
# only run 50 times for the example; default 1000
t1$cal_ses_betampd(runs = 50, abundance.weighted = TRUE)
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$cal_ses_betamntd`
## ------------------------------------------------
## Not run:
# only run 50 times for the example; default 1000
t1$cal_ses_betamntd(runs = 50, abundance.weighted = TRUE, exclude.conspecifics = FALSE)
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$cal_rcbray`
## ------------------------------------------------
## Not run:
# only run 50 times for the example; default 1000
t1$cal_rcbray(runs = 50)
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$cal_process`
## ------------------------------------------------
## Not run:
t1$cal_process(use_betamntd = TRUE)
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$cal_NRI`
## ------------------------------------------------
# only run 50 times for the example; default 999
t1$cal_NRI(null.model = "taxa.labels", abundance.weighted = FALSE, runs = 50)
## ------------------------------------------------
## Method `trans_nullmodel$cal_NTI`
## ------------------------------------------------
# only run 50 times for the example; default 999
t1$cal_NTI(null.model = "taxa.labels", abundance.weighted = TRUE, runs = 50)
## ------------------------------------------------
## Method `trans_nullmodel$cal_Cscore`
## ------------------------------------------------
## Not run:
t1$cal_Cscore(normalise = FALSE)
t1$cal_Cscore(by_group = "Group", normalise = FALSE)
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$cal_NST`
## ------------------------------------------------
## Not run:
t1$cal_NST(group = "Group", dist.method = "bray", output.rand = TRUE, SES = TRUE)
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$cal_NST_test`
## ------------------------------------------------
## Not run:
t1$cal_NST_test()
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$cal_NST_convert`
## ------------------------------------------------
## Not run:
t1$cal_NST_convert(column = 10)
## End(Not run)