trans_env {microeco} | R Documentation |
Create trans_env
object to analyze the association between environmental factor and microbial community.
Description
This class is a wrapper for a series of operations associated with environmental measurements, including redundancy analysis, mantel test, correlation analysis and linear fitting.
Methods
Public methods
Method new()
Usage
trans_env$new( dataset = NULL, env_cols = NULL, add_data = NULL, character2numeric = FALSE, standardize = FALSE, complete_na = FALSE )
Arguments
dataset
the object of
microtable
Class.env_cols
default NULL; either numeric vector or character vector to select columns in
microtable$sample_table
, i.e. dataset$sample_table. This parameter should be used in the case that all the required environmental data is insample_table
of yourmicrotable
object. Otherwise, please useadd_data
parameter.add_data
default NULL;
data.frame
format; provide the environmental data in the formatdata.frame
; rownames should be sample names. This parameter should be used when themicrotable$sample_table
object does not have environmental data. Under this circumstance, theenv_cols
parameter can not be used because no data can be selected.character2numeric
default FALSE; whether convert the characters or factors to numeric values.
standardize
default FALSE; whether scale environmental variables to zero mean and unit variance.
complete_na
default FALSE; Whether fill the NA (missing value) in the environmental data; If TRUE, the function can run the interpolation with the
mice
package.
Returns
data_env
stored in the object.
Examples
data(dataset) data(env_data_16S) t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
Method cal_diff()
Differential test of environmental variables across groups.
Usage
trans_env$cal_diff( group = NULL, by_group = NULL, method = c("KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "lm", "lme", "glmm")[1], ... )
Arguments
group
default NULL; a colname of
sample_table
used to compare values across groups.by_group
default NULL; perform differential test among groups (
group
parameter) within each group (by_group
parameter).method
default "KW"; see the following available options:
- 'KW'
KW: Kruskal-Wallis Rank Sum Test for all groups (>= 2)
- 'KW_dunn'
Dunn's Kruskal-Wallis Multiple Comparisons, see
dunnTest
function inFSA
package- 'wilcox'
Wilcoxon Rank Sum and Signed Rank Tests for all paired groups
- 't.test'
Student's t-Test for all paired groups
- 'anova'
Duncan's new multiple range test for one-way anova; see
duncan.test
function ofagricolae
package. For multi-factor anova, seeaov
- 'scheirerRayHare'
Scheirer Ray Hare test for nonparametric test used for a two-way factorial experiment; see
scheirerRayHare
function ofrcompanion
package- 'lm'
Linear model based on the
lm
function- 'lme'
lme: Linear Mixed Effect Model based on the
lmerTest
package. Theformula
parameter should be provided.- 'glmm'
Generalized linear mixed model (GLMM) based on the glmmTMB package. The
formula
andfamily
parameters are needed. Please refer to glmmTMB package to select the family function, e.g.family = glmmTMB::lognormal(link = "log")
. The usage of formula is similar with that in 'lme' method. For the details of return table, please refer to the help document of trans_diff class.
...
parameters passed to
cal_diff
function oftrans_alpha
class.
Returns
res_diff
stored in the object.
In the data frame, 'Group' column means that the group has the maximum median or mean value across the test groups;
For non-parametric methods, median value; For t.test, mean value.
Examples
\donttest{ t1$cal_diff(group = "Group", method = "KW") t1$cal_diff(group = "Group", method = "anova") }
Method plot_diff()
Plot environmental variables across groups and add the significance label.
Usage
trans_env$plot_diff(...)
Arguments
...
parameters passed to
plot_alpha
intrans_alpha
class. Please seeplot_alpha
function oftrans_alpha
for all the available parameters.
Method cal_autocor()
Calculate the autocorrelations among environmental variables.
Usage
trans_env$cal_autocor( group = NULL, ggpairs = TRUE, color_values = RColorBrewer::brewer.pal(8, "Dark2"), alpha = 0.8, ... )
Arguments
group
default NULL; a colname of sample_table; used to perform calculations for different groups.
ggpairs
default TRUE; whether use
GGally::ggpairs
function to plot the correlation results.color_values
default
RColorBrewer::brewer.pal
(8, "Dark2"); colors palette.alpha
default 0.8; the alpha value to add transparency in colors; useful when group is not NULL.
...
parameters passed to
GGally::ggpairs
whenggpairs = TRUE
or passed tocal_cor
oftrans_env
class whenggpairs = FALSE
.
Returns
ggmatrix
when ggpairs = TRUE
or data.frame object when ggpairs = FALSE
.
Examples
\dontrun{ # Spearman correlation t1$cal_autocor(upper = list(continuous = GGally::wrap("cor", method= "spearman"))) }
Method cal_ordination()
Redundancy analysis (RDA) and Correspondence Analysis (CCA) based on the vegan
package.
Usage
trans_env$cal_ordination( method = c("RDA", "dbRDA", "CCA")[1], feature_sel = FALSE, taxa_level = NULL, taxa_filter_thres = NULL, use_measure = NULL, add_matrix = NULL, ... )
Arguments
method
default c("RDA", "dbRDA", "CCA")[1]; the ordination method.
feature_sel
default FALSE; whether perform the feature selection based on forward selection method.
taxa_level
default NULL; If use RDA or CCA, provide the taxonomic rank, such as "Phylum" or "Genus"; If use otu_table; please set
taxa_level = "OTU"
.taxa_filter_thres
default NULL; relative abundance threshold used to filter taxa when method is "RDA" or "CCA".
use_measure
default NULL; a name of beta diversity matrix; only available when parameter
method = "dbRDA"
; If not provided, use the first beta diversity matrix in themicrotable$beta_diversity
automatically.add_matrix
default NULL; additional distance matrix provided, when the user does not want to use the beta diversity matrix within the dataset; only available when method = "dbRDA".
...
paremeters passed to
dbrda
,rda
orcca
function according to themethod
parameter.
Returns
res_ordination
and res_ordination_R2
stored in the object.
Examples
\donttest{ t1$cal_ordination(method = "dbRDA", use_measure = "bray") t1$cal_ordination(method = "RDA", taxa_level = "Genus") t1$cal_ordination(method = "CCA", taxa_level = "Genus") }
Method cal_ordination_anova()
Use anova to test the significance of the terms and axis in ordination.
Usage
trans_env$cal_ordination_anova(...)
Arguments
...
parameters passed to
anova
function.
Returns
res_ordination_terms and res_ordination_axis
stored in the object.
Examples
\donttest{ t1$cal_ordination_anova() }
Method cal_ordination_envfit()
Fit each environmental vector onto the ordination to obtain the contribution of each variable.
Usage
trans_env$cal_ordination_envfit(...)
Arguments
...
the parameters passed to
vegan::envfit
function.
Returns
res_ordination_envfit
stored in the object.
Examples
\donttest{ t1$cal_ordination_envfit() }
Method trans_ordination()
Transform ordination results for the following plot.
Usage
trans_env$trans_ordination( show_taxa = 10, adjust_arrow_length = FALSE, min_perc_env = 0.1, max_perc_env = 0.8, min_perc_tax = 0.1, max_perc_tax = 0.8 )
Arguments
show_taxa
default 10; taxa number shown in the plot.
adjust_arrow_length
default FALSE; whether adjust the arrow length to be clearer.
min_perc_env
default 0.1; used for scaling up the minimum of env arrow; multiply by the maximum distance between samples and origin.
max_perc_env
default 0.8; used for scaling up the maximum of env arrow; multiply by the maximum distance between samples and origin.
min_perc_tax
default 0.1; used for scaling up the minimum of tax arrow; multiply by the maximum distance between samples and origin.
max_perc_tax
default 0.8; used for scaling up the maximum of tax arrow; multiply by the maximum distance between samples and origin.
Returns
res_ordination_trans
stored in the object.
Examples
\donttest{ t1$trans_ordination(adjust_arrow_length = TRUE, min_perc_env = 0.1, max_perc_env = 1) }
Method plot_ordination()
plot ordination result.
Usage
trans_env$plot_ordination( plot_color = NULL, plot_shape = NULL, color_values = RColorBrewer::brewer.pal(8, "Dark2"), shape_values = c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14), env_text_color = "black", env_arrow_color = "grey30", taxa_text_color = "firebrick1", taxa_arrow_color = "firebrick1", env_text_size = 3.7, taxa_text_size = 3, taxa_text_italic = TRUE, plot_type = "point", point_size = 3, point_alpha = 0.8, centroid_segment_alpha = 0.6, centroid_segment_size = 1, centroid_segment_linetype = 3, ellipse_chull_fill = TRUE, ellipse_chull_alpha = 0.1, ellipse_level = 0.9, ellipse_type = "t", add_sample_label = NULL, env_nudge_x = NULL, env_nudge_y = NULL, taxa_nudge_x = NULL, taxa_nudge_y = NULL, ... )
Arguments
plot_color
default NULL; a colname of
sample_table
to assign colors to different groups.plot_shape
default NULL; a colname of
sample_table
to assign shapes to different groups.color_values
default
RColorBrewer::brewer.pal
(8, "Dark2"); color pallete for different groups.shape_values
default c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14); a vector for point shape types of groups, see ggplot2 tutorial.
env_text_color
default "black"; environmental variable text color.
env_arrow_color
default "grey30"; environmental variable arrow color.
taxa_text_color
default "firebrick1"; taxa text color.
taxa_arrow_color
default "firebrick1"; taxa arrow color.
env_text_size
default 3.7; environmental variable text size.
taxa_text_size
default 3; taxa text size.
taxa_text_italic
default TRUE; "italic"; whether use "italic" style for the taxa text.
plot_type
default "point"; plotting type of samples; one or more elements of "point", "ellipse", "chull", "centroid" and "none"; "none" denotes nothing.
- 'point'
add point
- 'ellipse'
add confidence ellipse for points of each group
- 'chull'
add convex hull for points of each group
- 'centroid'
add centroid line of each group
point_size
default 3; point size in plot when "point" is in
plot_type
.point_alpha
default .8; point transparency in plot when "point" is in
plot_type
.centroid_segment_alpha
default 0.6; segment transparency in plot when "centroid" is in
plot_type
.centroid_segment_size
default 1; segment size in plot when "centroid" is in
plot_type
.centroid_segment_linetype
default 3; an integer; the line type related with centroid in plot when "centroid" is in
plot_type
.ellipse_chull_fill
default TRUE; whether fill colors to the area of ellipse or chull.
ellipse_chull_alpha
default 0.1; color transparency in the ellipse or convex hull depending on whether "ellipse" or "centroid" is in
plot_type
.ellipse_level
default .9; confidence level of ellipse when "ellipse" is in
plot_type
.ellipse_type
default "t"; ellipse type when "ellipse" is in
plot_type
; see type parameter instat_ellipse
function of ggplot2 package.add_sample_label
default NULL; the column name in sample table, if provided, show the point name in plot.
env_nudge_x
default NULL; numeric vector to adjust the env text x axis position; passed to nudge_x parameter of
ggrepel::geom_text_repel
function; default NULL represents automatic adjustment; the length must be same with the row number ofobject$res_ordination_trans$df_arrows
. For example, if there are 5 env variables, env_nudge_x should be something likec(0.1, 0, -0.2, 0, 0)
. Note that this parameter and env_nudge_y is generally used when the automatic text adjustment is not very well.env_nudge_y
default NULL; numeric vector to adjust the env text y axis position; passed to nudge_y parameter of ggrepel::geom_text_repel function; default NULL represents automatic adjustment; the length must be same with the row number of
object$res_ordination_trans$df_arrows
. For example, if there are 5 env variables, env_nudge_y should be something likec(0.1, 0, -0.2, 0, 0)
.taxa_nudge_x
default NULL; numeric vector to adjust the taxa text x axis position; passed to nudge_x parameter of ggrepel::geom_text_repel function; default NULL represents automatic adjustment; the length must be same with the row number of
object$res_ordination_trans$df_arrows_spe
. For example, if 3 taxa are shown, taxa_nudge_x should be something likec(0.3, -0.2, 0)
.taxa_nudge_y
default NULL; numeric vector to adjust the taxa text y axis position; passed to nudge_y parameter of ggrepel::geom_text_repel function; default NULL represents automatic adjustment; the length must be same with the row number of
object$res_ordination_trans$df_arrows_spe
. For example, if 3 taxa are shown, taxa_nudge_y should be something likec(-0.2, 0, 0.4)
....
paremeters passed to
geom_point
for controlling sample points.
Returns
ggplot object.
Examples
\donttest{ t1$cal_ordination(method = "RDA") t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 1.5) t1$plot_ordination(plot_color = "Group") t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = c("point", "ellipse")) t1$plot_ordination(plot_color = "Group", plot_type = c("point", "chull")) t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"), centroid_segment_linetype = 1) t1$plot_ordination(plot_color = "Group", env_nudge_x = c(0.4, 0, 0, 0, 0, -0.2, 0, 0), env_nudge_y = c(0.6, 0, 0.2, 0.5, 0, 0.1, 0, 0.2)) }
Method cal_mantel()
Mantel test between beta diversity matrix and environmental data.
Usage
trans_env$cal_mantel( partial_mantel = FALSE, add_matrix = NULL, use_measure = NULL, method = "pearson", p_adjust_method = "fdr", by_group = NULL, ... )
Arguments
partial_mantel
default FALSE; whether use partial mantel test; If TRUE, use other all measurements as the zdis in each calculation.
add_matrix
default NULL; additional distance matrix provided when the beta diversity matrix in the dataset is not used.
use_measure
default NULL; a name of beta diversity matrix. If necessary and not provided, use the first beta diversity matrix.
method
default "pearson"; one of "pearson", "spearman" and "kendall"; correlation method; see method parameter in
vegan::mantel
function.p_adjust_method
default "fdr"; p.adjust method; see method parameter of
p.adjust
function for available options.by_group
default NULL; one column name or number in sample_table; used to perform mantel test for different groups separately.
...
paremeters passed to
mantel
of vegan package.
Returns
res_mantel
in object.
Examples
\donttest{ t1$cal_mantel(use_measure = "bray") t1$cal_mantel(partial_mantel = TRUE, use_measure = "bray") }
Method cal_cor()
Calculate the correlations between taxonomic abundance and environmental variables. Actually, it can also be applied to other correlation between any two variables from two tables.
Usage
trans_env$cal_cor( use_data = c("Genus", "all", "other")[1], cor_method = c("pearson", "spearman", "kendall", "maaslin2")[1], add_abund_table = NULL, filter_thres = 0, use_taxa_num = NULL, other_taxa = NULL, p_adjust_method = "fdr", p_adjust_type = c("All", "Taxa", "Env")[1], by_group = NULL, group_use = NULL, group_select = NULL, taxa_name_full = TRUE, tmp_input_maaslin2 = "tmp_input", tmp_output_maaslin2 = "tmp_output", ... )
Arguments
use_data
default "Genus"; "Genus", "all" or "other"; "Genus" or other taxonomic name: use genus or other taxonomic abundance table in
taxa_abund
; "all": use all merged taxonomic abundance table; "other": provide additional taxa name withother_taxa
parameter which is necessary.cor_method
default "pearson"; "pearson", "spearman", "kendall" or "maaslin2"; correlation method. "pearson", "spearman" or "kendall" all refer to the correlation analysis based on the
cor.test
function in R. "maaslin2" is the method inMaaslin2
package for finding associations between metadata and potentially high-dimensional microbial multi-omics data.add_abund_table
default NULL; additional data table to be used. Row names must be sample names.
filter_thres
default 0; the abundance threshold, such as 0.0005 when the input is relative abundance. The features with abundances lower than filter_thres will be filtered. This parameter cannot be applied when add_abund_table parameter is provided.
use_taxa_num
default NULL; integer; a number used to select high abundant taxa; only useful when
use_data
parameter is a taxonomic level, e.g., "Genus".other_taxa
default NULL; character vector containing a series of feature names; used when use_data = "other"; provided names should be standard full names used to select taxa from all the tables in taxa_abund list of the microtable object; please see the example.
p_adjust_method
default "fdr"; p.adjust method; see method parameter of
p.adjust
function for available options.p_adjust_method = "none"
can disable the p value adjustment.p_adjust_type
default "All"; "All", "Taxa" or "Env"; P value adjustment type. "Env": adjustment for each environmental variable separately; "Taxa": adjustment for each taxon separately; "All": adjustment for all the data together no matter whether
by_group
is provided.by_group
default NULL; one column name or number in sample_table; calculate correlations for different groups separately.
group_use
default NULL; numeric or character vector to select one column in sample_table for selecting samples; together with group_select.
group_select
default NULL; the group name used; remain samples within the group.
taxa_name_full
default TRUE; Whether use the complete taxonomic name of taxa.
tmp_input_maaslin2
default "tmp_input"; the temporary folder used to save the input files for Maaslin2.
tmp_output_maaslin2
default "tmp_output"; the temporary folder used to save the output files of Maaslin2.
...
parameters passed to
Maaslin2
function ofMaaslin2
package.
Returns
res_cor
stored in the object.
Examples
\donttest{ t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus") t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11]) t1$cal_cor(use_data = "other", p_adjust_method = "fdr", other_taxa = t2$res_diff$Taxa[1:40]) }
Method plot_cor()
Plot correlation heatmap.
Usage
trans_env$plot_cor( color_vector = c("#053061", "white", "#A50026"), color_palette = NULL, pheatmap = FALSE, filter_feature = NULL, filter_env = NULL, ylab_type_italic = FALSE, keep_full_name = FALSE, keep_prefix = TRUE, text_y_order = NULL, text_x_order = NULL, xtext_angle = 30, xtext_size = 10, xtext_color = "black", ytext_size = NULL, ytext_color = "black", sig_label_size = 4, font_family = NULL, cluster_ggplot = "none", cluster_height_rows = 0.2, cluster_height_cols = 0.2, text_y_position = "right", mylabels_x = NULL, na.value = "grey50", trans = "identity", ... )
Arguments
color_vector
default
c("#053061", "white", "#A50026")
; colors with only three values representing low, middle and high values.color_palette
default NULL; a customized palette with more color values to be used instead of the parameter
color_vector
.pheatmap
default FALSE; whether use pheatmap package to plot the heatmap.
filter_feature
default NULL; character vector; used to filter features that only have labels in the
filter_feature
vector. For example,filter_feature = ""
can be used to remove features that only have "", no any "*".filter_env
default NULL; character vector; used to filter environmental variables that only have labels in the
filter_env
vector. For example,filter_env = ""
can be used to remove features that only have "", no any "*".ylab_type_italic
default FALSE; whether use italic type for y lab text.
keep_full_name
default FALSE; whether use the complete taxonomic name.
keep_prefix
default TRUE; whether retain the taxonomic prefix.
text_y_order
default NULL; character vector; provide customized text order for y axis; shown in the plot from the top down.
text_x_order
default NULL; character vector; provide customized text order for x axis.
xtext_angle
default 30; number ranging from 0 to 90; used to adjust x axis text angle.
xtext_size
default 10; x axis text size.
xtext_color
default "black"; x axis text color.
ytext_size
default NULL; y axis text size. NULL means default ggplot2 value.
ytext_color
default "black"; y axis text color.
sig_label_size
default 4; the size of significance label shown in the cell.
font_family
default NULL; font family used in
ggplot2
; only available whenpheatmap = FALSE
.cluster_ggplot
default "none"; add clustering dendrogram for
ggplot2
based heatmap. Available options: "none", "row", "col" or "both". "none": no any clustering used; "row": add clustering for rows; "col": add clustering for columns; "both": add clustering for both rows and columns. Only available whenpheatmap = FALSE
.cluster_height_rows
default 0.2, the dendrogram plot height for rows; available when
cluster_ggplot
is not "none".cluster_height_cols
default 0.2, the dendrogram plot height for columns; available when
cluster_ggplot
is not "none".text_y_position
default "right"; "left" or "right"; the y axis text position for ggplot2 based heatmap.
mylabels_x
default NULL; provide x axis text labels additionally; only available when
pheatmap = TRUE
.na.value
default "grey50"; the color for the missing values when
pheatmap = FALSE
.trans
default "identity"; the transformation for continuous scales in the legend when
pheatmap = FALSE
; see thetrans
item inggplot2::scale_colour_gradientn
....
paremeters passed to
ggplot2::geom_tile
orpheatmap::pheatmap
, depending on the parameterpheatmap
is FALSE or TRUE.
Returns
plot.
Examples
\donttest{ t1$plot_cor(pheatmap = FALSE) }
Method plot_scatterfit()
Scatter plot with fitted line based on the correlation or regression.
The most important thing is to make sure that the input x and y
have correponding sample orders. If one of x and y is a matrix, the other will be also transformed to matrix with Euclidean distance.
Then, both of them are transformed to be vectors. If x or y is a vector with a single value, x or y will be
assigned according to the column selection of the data_env
in the object.
Usage
trans_env$plot_scatterfit( x = NULL, y = NULL, group = NULL, group_order = NULL, color_values = RColorBrewer::brewer.pal(8, "Dark2"), shape_values = NULL, type = c("cor", "lm")[1], cor_method = "pearson", label_sep = ";", label.x.npc = "left", label.y.npc = "top", label.x = NULL, label.y = NULL, x_axis_title = "", y_axis_title = "", point_size = 5, point_alpha = 0.6, line_size = 0.8, line_alpha = 1, line_color = "black", line_se = TRUE, line_se_color = "grey70", pvalue_trim = 4, cor_coef_trim = 3, lm_equation = TRUE, lm_fir_trim = 2, lm_sec_trim = 2, lm_squ_trim = 2, ... )
Arguments
x
default NULL; a single numeric or character value, a vector, or a distance matrix used for the x axis. If x is a single value, it will be used to select the column of
data_env
in the object. If x is a distance matrix, it will be transformed to be a vector.y
default NULL; a single numeric or character value, a vector, or a distance matrix used for the y axis. If y is a single value, it will be used to select the column of
data_env
in the object. If y is a distance matrix, it will be transformed to be a vector.group
default NULL; a character vector; if length is 1, must be a colname of
sample_table
in the input dataset; Otherwise, group should be a vector having same length with x/y (for vector) or column number of x/y (for matrix).group_order
default NULL; a vector used to order groups, i.e. reorder the legend and colors in plot when group is not NULL; If group_order is NULL and group is provided, the function can first check whether the group column of
sample_table
is factor. If group_order is provided, disable the group orders or factor levels in thegroup
column ofsample_table
.color_values
default
RColorBrewer::brewer.pal
(8, "Dark2"); color pallete for different groups.shape_values
default NULL; a numeric vector for point shape types of groups when group is not NULL, see ggplot2 tutorial.
type
default c("cor", "lm")[1]; "cor": correlation; "lm" for regression.
cor_method
default "pearson"; one of "pearson", "kendall" and "spearman"; correlation method.
label_sep
default ";"; the separator string between different label parts.
label.x.npc
default "left"; can be numeric or character vector of the same length as the number of groups and/or panels. If too short, they will be recycled.
- numeric
value should be between 0 and 1. Coordinates to be used for positioning the label, expressed in "normalized parent coordinates"
- character
allowed values include: i) one of c('right', 'left', 'center', 'centre', 'middle') for x-axis; ii) and one of c( 'bottom', 'top', 'center', 'centre', 'middle') for y-axis.
label.y.npc
default "top"; same usage with label.x.npc; also see
label.y.npc
parameter ofggpubr::stat_cor
function.label.x
default NULL; x axis absolute position for adding the statistic label.
label.y
default NULL; x axis absolute position for adding the statistic label.
x_axis_title
default ""; the title of x axis.
y_axis_title
default ""; the title of y axis.
point_size
default 5; point size value.
point_alpha
default 0.6; alpha value for the point color transparency.
line_size
default 0.8; line size value.
line_alpha
default 1; alpha value for the line color transparency.
line_color
default "black"; fitted line color; only available when
group = NULL
.line_se
default TRUE; Whether show the confidence interval for the fitting.
line_se_color
default "grey70"; the color to fill the confidence interval when
line_se = TRUE
.pvalue_trim
default 4; trim the decimal places of p value.
cor_coef_trim
default 3; trim the decimal places of correlation coefficient.
lm_equation
default TRUE; whether include the equation in the label when
type = "lm"
.lm_fir_trim
default 2; trim the decimal places of first coefficient in regression.
lm_sec_trim
default 2; trim the decimal places of second coefficient in regression.
lm_squ_trim
default 2; trim the decimal places of R square in regression.
...
other arguments passed to
geom_text
orgeom_label
.
Returns
ggplot.
Examples
\donttest{ t1$plot_scatterfit(x = 1, y = 2, type = "cor") t1$plot_scatterfit(x = 1, y = 2, type = "lm", point_alpha = .3) t1$plot_scatterfit(x = "pH", y = "TOC", type = "lm", group = "Group", line_se = FALSE) t1$plot_scatterfit(x = dataset$beta_diversity$bray[rownames(t1$data_env), rownames(t1$data_env)], y = "pH") }
Method print()
Print the trans_env object.
Usage
trans_env$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_env$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
## ------------------------------------------------
## Method `trans_env$new`
## ------------------------------------------------
data(dataset)
data(env_data_16S)
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
## ------------------------------------------------
## Method `trans_env$cal_diff`
## ------------------------------------------------
t1$cal_diff(group = "Group", method = "KW")
t1$cal_diff(group = "Group", method = "anova")
## ------------------------------------------------
## Method `trans_env$cal_autocor`
## ------------------------------------------------
## Not run:
# Spearman correlation
t1$cal_autocor(upper = list(continuous = GGally::wrap("cor", method= "spearman")))
## End(Not run)
## ------------------------------------------------
## Method `trans_env$cal_ordination`
## ------------------------------------------------
t1$cal_ordination(method = "dbRDA", use_measure = "bray")
t1$cal_ordination(method = "RDA", taxa_level = "Genus")
t1$cal_ordination(method = "CCA", taxa_level = "Genus")
## ------------------------------------------------
## Method `trans_env$cal_ordination_anova`
## ------------------------------------------------
t1$cal_ordination_anova()
## ------------------------------------------------
## Method `trans_env$cal_ordination_envfit`
## ------------------------------------------------
t1$cal_ordination_envfit()
## ------------------------------------------------
## Method `trans_env$trans_ordination`
## ------------------------------------------------
t1$trans_ordination(adjust_arrow_length = TRUE, min_perc_env = 0.1, max_perc_env = 1)
## ------------------------------------------------
## Method `trans_env$plot_ordination`
## ------------------------------------------------
t1$cal_ordination(method = "RDA")
t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 1.5)
t1$plot_ordination(plot_color = "Group")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "chull"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"),
centroid_segment_linetype = 1)
t1$plot_ordination(plot_color = "Group", env_nudge_x = c(0.4, 0, 0, 0, 0, -0.2, 0, 0),
env_nudge_y = c(0.6, 0, 0.2, 0.5, 0, 0.1, 0, 0.2))
## ------------------------------------------------
## Method `trans_env$cal_mantel`
## ------------------------------------------------
t1$cal_mantel(use_measure = "bray")
t1$cal_mantel(partial_mantel = TRUE, use_measure = "bray")
## ------------------------------------------------
## Method `trans_env$cal_cor`
## ------------------------------------------------
t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus")
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
t1$cal_cor(use_data = "other", p_adjust_method = "fdr", other_taxa = t2$res_diff$Taxa[1:40])
## ------------------------------------------------
## Method `trans_env$plot_cor`
## ------------------------------------------------
t1$plot_cor(pheatmap = FALSE)
## ------------------------------------------------
## Method `trans_env$plot_scatterfit`
## ------------------------------------------------
t1$plot_scatterfit(x = 1, y = 2, type = "cor")
t1$plot_scatterfit(x = 1, y = 2, type = "lm", point_alpha = .3)
t1$plot_scatterfit(x = "pH", y = "TOC", type = "lm", group = "Group", line_se = FALSE)
t1$plot_scatterfit(x =
dataset$beta_diversity$bray[rownames(t1$data_env), rownames(t1$data_env)], y = "pH")