trans_classifier {microeco} | R Documentation |
Create trans_classifier
object for machine-learning-based model prediction.
Description
This class is a wrapper for methods of machine-learning-based classification or regression models, including data pre-processing, feature selection, data split, model training, prediction, confusionMatrix and ROC (Receiver Operator Characteristic) or PR (Precision-Recall) curve.
Author(s): Felipe Mansoldo and Chi Liu
Methods
Public methods
Method new()
Create a trans_classifier object.
Usage
trans_classifier$new( dataset, x.predictors = "Genus", y.response = NULL, n.cores = 1 )
Arguments
dataset
an object of
microtable
class.x.predictors
default "Genus"; character string or data.frame; a character string represents selecting the corresponding data from
microtable$taxa_abund
; data.frame denotes other customized input. See the following available options:- 'Genus'
use Genus level table in
microtable$taxa_abund
, or other specific taxonomic rank, e.g., 'Phylum'. If an input level (e.g., ASV) is not found in the names of taxa_abund list, the function will useotu_table
to calculate relative abundance of features.- 'all'
use all the levels stored in
microtable$taxa_abund
.- other input
must be a data.frame object. It should have the same format with the tables in microtable$taxa_abund, i.e. rows are features; columns are samples with same names in sample_table.
y.response
default NULL; the response variable in
sample_table
of inputmicrotable
object.n.cores
default 1; the CPU thread used.
Returns
data_feature
and data_response
stored in the object.
Examples
\donttest{ data(dataset) t1 <- trans_classifier$new( dataset = dataset, x.predictors = "Genus", y.response = "Group") }
Method cal_preProcess()
Pre-process (centering, scaling etc.) of the feature data based on the caret::preProcess function. See https://topepo.github.io/caret/pre-processing.html for more details.
Usage
trans_classifier$cal_preProcess(...)
Arguments
...
parameters pass to
preProcess
function of caret package.
Returns
preprocessed data_feature
in the object.
Examples
\dontrun{ # "nzv" removes near zero variance predictors t1$cal_preProcess(method = c("center", "scale", "nzv")) }
Method cal_feature_sel()
Perform feature selection. See https://topepo.github.io/caret/feature-selection-overview.html for more details.
Usage
trans_classifier$cal_feature_sel( boruta.maxRuns = 300, boruta.pValue = 0.01, boruta.repetitions = 4, ... )
Arguments
boruta.maxRuns
default 300; maximal number of importance source runs; passed to the
maxRuns
parameter inBoruta
function of Boruta package.boruta.pValue
default 0.01; p value passed to the pValue parameter in
Boruta
function of Boruta package.boruta.repetitions
default 4; repetition runs for the feature selection.
...
parameters pass to
Boruta
function of Boruta package.
Returns
optimized data_feature
in the object.
Examples
\dontrun{ t1$cal_feature_sel(boruta.maxRuns = 300, boruta.pValue = 0.01) }
Method cal_split()
Split data for training and testing.
Usage
trans_classifier$cal_split(prop.train = 3/4)
Arguments
prop.train
default 3/4; the ratio of the data used for the training.
Returns
data_train
and data_test
in the object.
Examples
\dontrun{ t1$cal_split(prop.train = 3/4) }
Method set_trainControl()
Control parameters for the following training. Please see trainControl
function of caret package for details.
Usage
trans_classifier$set_trainControl( method = "repeatedcv", classProbs = TRUE, savePredictions = TRUE, ... )
Arguments
method
default 'repeatedcv'; 'repeatedcv': Repeated k-Fold cross validation; see method parameter in
trainControl
function ofcaret
package for available options.classProbs
default TRUE; should class probabilities be computed for classification models?; see classProbs parameter in
caret::trainControl
function.savePredictions
default TRUE; see
savePredictions
parameter incaret::trainControl
function....
parameters pass to
trainControl
function of caret package.
Returns
trainControl
in the object.
Examples
\dontrun{ t1$set_trainControl(method = 'repeatedcv') }
Method cal_train()
Run the model training. Please see https://topepo.github.io/caret/available-models.html for available models.
Usage
trans_classifier$cal_train(method = "rf", max.mtry = 2, ntree = 500, ...)
Arguments
method
default "rf"; "rf": random forest; see method in
train
function of caret package for other options. For method = "rf", thetuneGrid
is set:expand.grid(mtry = seq(from = 1, to = max.mtry))
max.mtry
default 2; for method = "rf"; maximum mtry used in the
tuneGrid
to do hyperparameter tuning to optimize the model.ntree
default 500; for method = "rf"; Number of trees to grow. The default 500 is same with the
ntree
parameter inrandomForest
function in randomForest package. When it is a vector with more than one element, the function will try to optimize the model to select a best one, such asc(100, 500, 1000)
....
parameters pass to
caret::train
function.
Returns
res_train
in the object.
Examples
\dontrun{ # random forest t1$cal_train(method = "rf") # Support Vector Machines with Radial Basis Function Kernel t1$cal_train(method = "svmRadial", tuneLength = 15) }
Method cal_feature_imp()
Get feature importance from the training model.
Usage
trans_classifier$cal_feature_imp(rf_feature_sig = FALSE, ...)
Arguments
rf_feature_sig
default FALSE; whether calculate feature significance in 'rf' model using
rfPermute
package; only available formethod = "rf"
incal_train
function;...
parameters pass to
varImp
function of caret package. Ifrf_feature_sig
is TURE andtrain_method
is "rf", the parameters will be passed torfPermute
function of rfPermute package.
Returns
res_feature_imp
in the object. One row for each predictor variable. The column(s) are different importance measures.
For the method 'rf', it is MeanDecreaseGini (classification) or IncNodePurity (regression) when rf_feature_sig = FALSE
.
Examples
\dontrun{ t1$cal_feature_imp() }
Method plot_feature_imp()
Bar plot for feature importance.
Usage
trans_classifier$plot_feature_imp( rf_sig_show = NULL, show_sig_group = FALSE, ... )
Arguments
rf_sig_show
default NULL; "MeanDecreaseAccuracy" (Default) or "MeanDecreaseGini" for random forest classification; "%IncMSE" (Default) or "IncNodePurity" for random forest regression; Only available when
rf_feature_sig = TRUE
in functioncal_feature_imp
, which generate "MeanDecreaseGini" (and "MeanDecreaseAccuracy") or "%IncMSE" (and "IncNodePurity") in the column names ofres_feature_imp
; Function can also generate "Significance" according to the p value.show_sig_group
default FALSE; whether show the features with different significant groups; Only available when "Significance" is found in the data.
...
parameters pass to
plot_diff_bar
function oftrans_diff
package.
Returns
ggplot2
object.
Examples
\dontrun{ t1$plot_feature_imp(use_number = 1:20, coord_flip = FALSE) }
Method cal_predict()
Run the prediction.
Usage
trans_classifier$cal_predict(positive_class = NULL)
Arguments
positive_class
default NULL; see positive parameter in
confusionMatrix
function of caret package; If positive_class is NULL, use the first group in data as the positive class automatically.
Returns
res_predict
, res_confusion_fit
and res_confusion_stats
stored in the object.
The res_predict
is the predicted result for data_test
.
Several evaluation metrics in res_confusion_fit
are defined as follows:
Accuracy = \frac{TP + TN}{TP + TN + FP + FN}
Sensitivity = Recall = TPR = \frac{TP}{TP + FN}
Specificity = TNR = 1 - FPR = \frac{TN}{TN + FP}
Precision = \frac{TP}{TP + FP}
Prevalence = \frac{TP + FN}{TP + TN + FP + FN}
F1-Score = \frac{2 * Precision * Recall}{Precision + Recall}
Kappa = \frac{Accuracy - Pe}{1 - Pe}
where TP is true positive; TN is ture negative; FP is false positive; and FN is false negative; FPR is False Positive Rate; TPR is True Positive Rate; TNR is True Negative Rate; Pe is the hypothetical probability of chance agreement on the classes for reference and prediction in the confusion matrix. Accuracy represents the ratio of correct predictions. Precision identifies how the model accurately predicted the positive classes. Recall (sensitivity) measures the ratio of actual positives that are correctly identified by the model. F1-score is the weighted average score of recall and precision. The value at 1 is the best performance and at 0 is the worst. Prevalence represents how often positive events occurred. Kappa identifies how well the model is predicting.
Examples
\dontrun{ t1$cal_predict() }
Method plot_confusionMatrix()
Plot the cross-tabulation of observed and predicted classes with associated statistics based on the results of function cal_predict
.
Usage
trans_classifier$plot_confusionMatrix( plot_confusion = TRUE, plot_statistics = TRUE )
Arguments
plot_confusion
default TRUE; whether plot the confusion matrix.
plot_statistics
default TRUE; whether plot the statistics.
Returns
ggplot
object.
Examples
\dontrun{ t1$plot_confusionMatrix() }
Method cal_ROC()
Get ROC (Receiver Operator Characteristic) curve data and the performance data.
Usage
trans_classifier$cal_ROC(input = "pred")
Arguments
input
default "pred"; 'pred' or 'train'; 'pred' represents using prediction results; 'train' represents using training results.
Returns
a list res_ROC
stored in the object. It has two tables: res_roc
and res_pr
. AUC: Area Under the ROC Curve.
For the definition of metrics, please refer to the return part of function cal_predict
.
Examples
\dontrun{ t1$cal_ROC() }
Method plot_ROC()
Plot ROC curve.
Usage
trans_classifier$plot_ROC( plot_type = c("ROC", "PR")[1], plot_group = "all", color_values = RColorBrewer::brewer.pal(8, "Dark2"), add_AUC = TRUE, plot_method = FALSE, ... )
Arguments
plot_type
default c("ROC", "PR")[1]; 'ROC' represents ROC (Receiver Operator Characteristic) curve; 'PR' represents PR (Precision-Recall) curve.
plot_group
default "all"; 'all' represents all the classes in the model; 'add' represents all adding micro-average and macro-average results, see https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html; other options should be one or more class names, same with the names in Group column of res_ROC$res_roc from cal_ROC function.
color_values
default RColorBrewer::brewer.pal(8, "Dark2"); colors used in the plot.
add_AUC
default TRUE; whether add AUC in the legend.
plot_method
default FALSE; If TRUE, show the method in the legend though only one method is found.
...
parameters pass to
geom_path
function of ggplot2 package.
Returns
ggplot2
object.
Examples
\dontrun{ t1$plot_ROC(size = 1, alpha = 0.7) }
Method cal_caretList()
Use caretList
function of caretEnsemble package to run multiple models. For the available models, please run names(getModelInfo())
.
Usage
trans_classifier$cal_caretList(...)
Arguments
...
parameters pass to
caretList
function ofcaretEnsemble
package.
Returns
res_caretList_models
in the object.
Examples
\dontrun{ t1$cal_caretList(methodList = c('rf', 'svmRadial')) }
Method cal_caretList_resamples()
Use resamples
function of caret package to collect the metric values based on the res_caretList_models
data.
Usage
trans_classifier$cal_caretList_resamples(...)
Arguments
...
parameters pass to
resamples
function ofcaret
package.
Returns
res_caretList_resamples
list and res_caretList_resamples_reshaped
table in the object.
Examples
\dontrun{ t1$cal_caretList_resamples() }
Method plot_caretList_resamples()
Visualize the metric values based on the res_caretList_resamples_reshaped
data.
Usage
trans_classifier$plot_caretList_resamples( color_values = RColorBrewer::brewer.pal(8, "Dark2"), ... )
Arguments
color_values
default
RColorBrewer::brewer.pal
(8, "Dark2"); colors palette for the box....
parameters pass to
geom_boxplot
function ofggplot2
package.
Returns
ggplot object.
Examples
\dontrun{ t1$plot_caretList_resamples() }
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_classifier$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
## ------------------------------------------------
## Method `trans_classifier$new`
## ------------------------------------------------
data(dataset)
t1 <- trans_classifier$new(
dataset = dataset,
x.predictors = "Genus",
y.response = "Group")
## ------------------------------------------------
## Method `trans_classifier$cal_preProcess`
## ------------------------------------------------
## Not run:
# "nzv" removes near zero variance predictors
t1$cal_preProcess(method = c("center", "scale", "nzv"))
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$cal_feature_sel`
## ------------------------------------------------
## Not run:
t1$cal_feature_sel(boruta.maxRuns = 300, boruta.pValue = 0.01)
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$cal_split`
## ------------------------------------------------
## Not run:
t1$cal_split(prop.train = 3/4)
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$set_trainControl`
## ------------------------------------------------
## Not run:
t1$set_trainControl(method = 'repeatedcv')
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$cal_train`
## ------------------------------------------------
## Not run:
# random forest
t1$cal_train(method = "rf")
# Support Vector Machines with Radial Basis Function Kernel
t1$cal_train(method = "svmRadial", tuneLength = 15)
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$cal_feature_imp`
## ------------------------------------------------
## Not run:
t1$cal_feature_imp()
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$plot_feature_imp`
## ------------------------------------------------
## Not run:
t1$plot_feature_imp(use_number = 1:20, coord_flip = FALSE)
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$cal_predict`
## ------------------------------------------------
## Not run:
t1$cal_predict()
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$plot_confusionMatrix`
## ------------------------------------------------
## Not run:
t1$plot_confusionMatrix()
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$cal_ROC`
## ------------------------------------------------
## Not run:
t1$cal_ROC()
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$plot_ROC`
## ------------------------------------------------
## Not run:
t1$plot_ROC(size = 1, alpha = 0.7)
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$cal_caretList`
## ------------------------------------------------
## Not run:
t1$cal_caretList(methodList = c('rf', 'svmRadial'))
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$cal_caretList_resamples`
## ------------------------------------------------
## Not run:
t1$cal_caretList_resamples()
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$plot_caretList_resamples`
## ------------------------------------------------
## Not run:
t1$plot_caretList_resamples()
## End(Not run)