scale_datlist {miceadds} | R Documentation |
Adding a Standardized Variable to a List of Multiply Imputed Datasets or a Single Datasets
Description
Adds a standardized variable to a list of multiply imputed datasets or
a single dataset. This function extends base::scale
for a data frame to a list of multiply imputed datasets.
Usage
scale_datlist(datlist, orig_var, trafo_var, weights=NULL, M=0, SD=1,
digits=NULL)
Arguments
datlist |
A data frame, a list of multiply imputed datasets of one of the classes
|
orig_var |
Vector with names of the variables to be transformed |
trafo_var |
Vector with names of the standardized variables |
weights |
Optional vector of sample weights. Alternatively, the |
M |
Mean of the transformed variable |
SD |
Standard deviation of the transformed variable |
digits |
Number of digits used for rounding the standardized variable |
Value
A vector or a matrix
See Also
Examples
## Not run:
#############################################################################
# EXAMPLE 1: Standardized variables in list of multiply imputed datasets
#############################################################################
data(data.ma02)
datlist <- data.ma02
#--- object of class 'datlist'
datlist <- miceadds::datlist_create( datlist )
# mean and SD of variable hisei
miceadds::ma.wtd.meanNA(data=datlist, weights=datlist[[1]]$studwgt, vars="hisei" )
mean( unlist( lapply( datlist, FUN=function(data){
stats::weighted.mean( data$hisei, data$studwgt ) } ) ) )
miceadds::ma.wtd.sdNA(data=datlist, weights=datlist[[1]]$studwgt, vars="hisei" )
mean( unlist( lapply( datlist, FUN=function(data){
sqrt( Hmisc::wtd.var( data$hisei, data$studwgt ) ) } ) ) )
# standardize variable hisei to M=100 and SD=15
datlist1a <- miceadds::scale_datlist( datlist=datlist, orig_var="hisei",
trafo_var="hisei100", weights=datlist[[1]]$studwgt, M=100, SD=15 )
# check mean and SD
miceadds::ma.wtd.meanNA(data=datlist1a, weights=datlist[[1]]$studwgt, vars="hisei100")
miceadds::ma.wtd.sdNA(data=datlist1a, weights=datlist[[1]]$studwgt, vars="hisei100")
#--- do standardization for unweighted sample with books <=3
# -> define a weighting variable at first
datlist0 <- mitools::imputationList( datlist )
datlist2a <- miceadds::within.imputationList( datlist0, {
# define weighting variable
wgt_books <- 1 * ( books <=3 )
} )
# standardize variable hisei to M=100 and SD=15 with respect to weighting variable
datlist2b <- miceadds::scale_datlist( datlist=datlist2a, orig_var="hisei", trafo_var="hisei100",
weights="wgt_books", M=100, SD=15 )
# check mean and SD (groupwise)
miceadds::ma.wtd.meanNA(data=datlist1a, weights=datlist[[1]]$studwgt, vars="hisei100")
miceadds::ma.wtd.sdNA(data=datlist1a, weights=datlist[[1]]$studwgt, vars="hisei100")
#--- transformation for a single dataset
dat0 <- datlist[[1]]
dat0a <- miceadds::scale_datlist( datlist=dat0, orig_var="hisei", trafo_var="hisei100",
weights=dat0$studwgt, M=100, SD=15 )
stats::weighted.mean( dat0a[,"hisei"], w=dat0a$studwgt )
stats::weighted.mean( dat0a[,"hisei100"], w=dat0a$studwgt )
sqrt( Hmisc::wtd.var( dat0a[,"hisei100"], weights=dat0a$studwgt ) )
#--- Standardizations for objects of class imputationList
datlist2 <- mitools::imputationList(datlist) # object class conversion
datlist2a <- miceadds::scale_datlist( datlist=datlist2, orig_var="hisei",
trafo_var="hisei100", weights=datlist[[1]]$studwgt, M=100, SD=15 )
#############################################################################
# EXAMPLE 2: Standardized variables in list of nested multiply imputed datasets
#############################################################################
# nested multiply imputed dataset in BIFIEsurvey package
data(data.timss4, package="BIFIEsurvey")
datlist <- data.timss4
wgt <- datlist[[1]][[1]]$TOTWGT
# class nested.datlist
imp1 <- miceadds::nested.datlist_create( datlist )
# class NestedImputationList
imp2 <- miceadds::NestedImputationList( datlist )
# standardize variable scsci
imp1a <- miceadds::scale_datlist( datlist=imp1, orig_var="scsci", trafo_var="zscsci", weights=wgt)
# check descriptives
miceadds::ma.wtd.meanNA( imp1a, weights=wgt, vars=c("scsci", "zscsci" ) )
miceadds::ma.wtd.sdNA( imp1a, weights=wgt, vars=c("scsci", "zscsci" ) )
#############################################################################
# EXAMPLE 3: Standardization of variables for imputed data in mice package
#############################################################################
data(nhanes, package="mice")
set.seed(76)
#--- impute nhanes data
imp <- mice::mice(nhanes)
#--- convert into datlist
datlist <- miceadds::mids2datlist(imp)
#--- scale datlist (all variables)
vars <- colnames(nhanes)
sdatlist <- miceadds::scale_datlist(datlist, orig_var=vars, trafo_var=paste0("z",vars) )
#--- reconvert to mids object
imp2 <- miceadds::datlist2mids(sdatlist)
#*** compare descriptive statistics of objects
round( miceadds::mean0( mice::complete(imp, action=1) ), 2 )
round( miceadds::mean0( mice::complete(imp2, action=1) ), 2 )
## End(Not run)