pool_mi {miceadds} | R Documentation |
Statistical Inference for Multiply Imputed Datasets
Description
Statistical inference for multiply imputed datasets. See
mitools::MIcombine
or
mice::pool
for
functions of the same functionality.
Usage
pool_mi(qhat, u=NULL, se=NULL, dfcom=1e+07, method="smallsample")
## S3 method for class 'pool_mi'
summary(object, alpha=0.05, ...)
## S3 method for class 'pool_mi'
coef(object, ...)
## S3 method for class 'pool_mi'
vcov(object, ...)
Arguments
qhat |
List of parameter vectors |
u |
List of covariance matrices |
se |
List of vector of standard errors. Either |
dfcom |
Degrees of freedom of statistical analysis |
method |
The default is the small sample inference ( |
object |
Object of class |
alpha |
Confidence level |
... |
Further arguments to be passed |
Value
Object of with similar output as produced by the
mice::pool
function.
See Also
mitools::MIcombine
,
mice::pool
,
mitml::testEstimates
For statistical inference for nested multiply imputed datasets see
NMIcombine
.
Examples
## Not run:
#############################################################################
# EXAMPLE 1: Statistical inference for models based on imputationList
#############################################################################
library(mitools)
library(mice)
library(Zelig)
library(mitml)
library(lavaan)
library(semTools)
data(data.ma02)
# save dataset as imputation list
imp <- mitools::imputationList( data.ma02 )
# mids object
imp0 <- miceadds::datlist2mids( imp )
# datlist object
imp1 <- miceadds::datlist_create(data.ma02)
#--- apply linear model based on imputationList
mod <- with( imp, stats::lm( read ~ hisei + female ) )
#--- apply linear model for mids object
mod0 <- with( imp0, stats::lm( read ~ hisei + female ) )
# extract coefficients
cmod <- mitools::MIextract( mod, fun=coef)
# extract standard errors
semod <- lapply( mod, FUN=function(mm){
smm <- summary(mm)
smm$coef[,"Std. Error"]
} )
# extract covariance matrix
vmod <- mitools::MIextract( mod, fun=vcov)
#*** pooling based on covariance matrices
res1 <- miceadds::pool_mi( qhat=cmod, u=vmod )
summary(res1)
coef(res1)
vcov(res1)
#*** pooling based on standard errors
res2 <- miceadds::pool_mi( qhat=cmod, se=semod )
#*** pooling with MIcombine
res3 <- mitools::MIcombine( results=cmod, variances=vmod )
#*** pooling with pool function in mice
res4 <- mice::pool( mod0 )
#*** analysis in Zelig
# convert datalist into object of class amelia
mi02 <- list( "imputations"=data.ma02)
class(mi02) <- "amelia"
res5 <- Zelig::zelig( read ~ hisei + female, model="ls", data=mi02 )
#*** analysis in lavaan
lavmodel <- "
read ~ hisei + female
read ~~ a*read
read ~ 1
# residual standard deviation
sde :=sqrt(a)
"
# analysis for first imputed dataset
mod6a <- lavaan::sem( lavmodel, data=imp1[[1]] )
summary(mod6a)
# analysis based on all datasets using with
mod6b <- lapply( imp1, FUN=function(data){
res <- lavaan::sem( lavmodel, data=data )
return(res)
} )
# extract parameters and covariance matrices
qhat0 <- lapply( mod6b, FUN=function(ll){ coef(ll) } )
u0 <- lapply( mod6b, FUN=function(ll){ vcov(ll) } )
res6b <- mitools::MIcombine( results=qhat0, variances=u0 )
# extract informations for all parameters
qhat <- lapply( mod6b, FUN=function(ll){
h1 <- lavaan::parameterEstimates(ll)
parnames <- paste0( h1$lhs, h1$op, h1$rhs )
v1 <- h1$est
names(v1) <- parnames
return(v1)
} )
se <- lapply( mod6b, FUN=function(ll){
h1 <- lavaan::parameterEstimates(ll)
parnames <- paste0( h1$lhs, h1$op, h1$rhs )
v1 <- h1$se
names(v1) <- parnames
return(v1)
} )
res6c <- miceadds::pool_mi( qhat=qhat, se=se )
# function runMI in semTools package
res6d <- semTools::runMI(model=lavmodel, data=imp1, m=length(imp1) )
# semTools version 0.4-9 provided an error message
# perform inference with mitml package
se2 <- lapply( se, FUN=function(ss){ ss^2 } ) # input variances
res6e <- mitml::testEstimates(qhat=qhat, uhat=se2)
#*** complete model estimation and inference in mitml
# convert into object of class mitml.list
ml02 <- mitml::as.mitml.list( data.ma02)
# estimate regression
mod7 <- with( ml02, stats::lm( read ~ hisei + female ) )
# inference
res7 <- mitml::testEstimates( mod7 )
#*** model comparison
summary(res1)
summary(res2)
summary(res3)
summary(res4)
summary(res5)
summary(res6b)
summary(res6c)
print(res6e)
print(res7)
## End(Not run)
[Package miceadds version 3.17-44 Index]