ml_mcmc {miceadds} | R Documentation |
MCMC Estimation for Mixed Effects Model
Description
Fits a mixed effects model via MCMC. The outcome can be normally distributed or ordinal (Goldstein, 2011; Goldstein, Carpenter, Kenward & Levin, 2009).
Usage
ml_mcmc( formula, data, iter=3000, burnin=500, print_iter=100, outcome="normal",
nu0=NULL, s0=1, psi_nu0_list=NULL, psi_S0_list=NULL, inits_lme4=FALSE,
thresh_fac=5.8, ridge=1e-5)
## S3 method for class 'ml_mcmc'
summary(object, digits=4, file=NULL, ...)
## S3 method for class 'ml_mcmc'
plot(x, ask=TRUE, ...)
## S3 method for class 'ml_mcmc'
coef(object, ...)
## S3 method for class 'ml_mcmc'
vcov(object, ...)
ml_mcmc_fit(y, X, Z_list, beta, Psi_list, sigma2, alpha, u_list, idcluster_list,
onlyintercept_list, ncluster_list, sigma2_nu0, sigma2_sigma2_0, psi_nu0_list,
psi_S0_list, est_sigma2, est_probit, parameter_index, est_parameter, npar, iter,
save_iter, verbose=TRUE, print_iter=500, parnames0=NULL, K=9999, est_thresh=FALSE,
thresh_fac=5.8, ridge=1e-5, parm_summary=TRUE )
## exported Rcpp functions
miceadds_rcpp_ml_mcmc_sample_beta(xtx_inv, X, Z_list, y, u_list, idcluster_list, sigma2,
onlyintercept_list, NR, ridge)
miceadds_rcpp_ml_mcmc_sample_u(X, beta, Z_list, y, ztz_list, idcluster_list,
ncluster_list, sigma2, Psi_list, onlyintercept_list, NR, u0_list, ridge)
miceadds_rcpp_ml_mcmc_sample_psi(u_list, nu0_list, S0_list, NR, ridge)
miceadds_rcpp_ml_mcmc_sample_sigma2(y, X, beta, Z_list, u_list, idcluster_list,
onlyintercept_list, nu0, sigma2_0, NR, ridge)
miceadds_rcpp_ml_mcmc_sample_latent_probit(X, beta, Z_list, u_list, idcluster_list, NR,
y_int, alpha, minval, maxval)
miceadds_rcpp_ml_mcmc_sample_thresholds(X, beta, Z_list, u_list, idcluster_list, NR, K,
alpha, sd_proposal, y_int)
miceadds_rcpp_ml_mcmc_predict_fixed_random(X, beta, Z_list, u_list, idcluster_list, NR)
miceadds_rcpp_ml_mcmc_predict_random_list(Z_list, u_list, idcluster_list, NR, N)
miceadds_rcpp_ml_mcmc_predict_random(Z, u, idcluster)
miceadds_rcpp_ml_mcmc_predict_fixed(X, beta)
miceadds_rcpp_ml_mcmc_subtract_fixed(y, X, beta)
miceadds_rcpp_ml_mcmc_subtract_random(y, Z, u, idcluster, onlyintercept)
miceadds_rcpp_ml_mcmc_compute_ztz(Z, idcluster, ncluster)
miceadds_rcpp_ml_mcmc_compute_xtx(X)
miceadds_rcpp_ml_mcmc_probit_category_prob(y_int, alpha, mu1, use_log)
miceadds_rcpp_pnorm(x, mu, sigma)
miceadds_rcpp_qnorm(x, mu, sigma)
miceadds_rcpp_rtnorm(mu, sigma, lower, upper)
Arguments
formula |
An R formula in lme4-like specification |
data |
Data frame |
iter |
Number of iterations |
burnin |
Number of burnin iterations |
print_iter |
Integer indicating that every |
outcome |
Outcome distribution: |
nu0 |
Prior sample size |
s0 |
Prior guess for variance |
inits_lme4 |
Logical indicating whether initial values should be obtained from fitting the model in the lme4 package |
thresh_fac |
Factor for proposal variance for estimating thresholds
which is determined as |
ridge |
Ridge parameter for covariance matrices in sampling |
object |
Object of class |
digits |
Number of digits after decimal used for printing |
file |
Optional file name |
... |
Further arguments to be passed |
x |
Object of class |
ask |
Logical indicating whether display of the next plot should be requested via clicking |
y |
Outcome vector |
X |
Design matrix fixed effects |
Z_list |
Design matrices random effects |
beta |
Initial vector fixed coefficients |
Psi_list |
Initial covariance matrices random effects |
sigma2 |
Initial residual covariance matrix |
alpha |
Vector of thresholds |
u_list |
List with initial values for random effects |
idcluster_list |
List with cluster identifiers for random effects |
onlyintercept_list |
List of logicals indicating whether only random intercepts are used for a corresponding random effect |
ncluster_list |
List containing number of clusters for each random effect |
sigma2_nu0 |
Prior sample size residual variance |
sigma2_sigma2_0 |
Prior guess residual variance |
psi_nu0_list |
List of prior sample sizes for covariance matrices of random effects |
psi_S0_list |
List of prior guesses for covariance matrices of random effects |
est_sigma2 |
Logical indicating whether residual variance should be estimated |
est_probit |
Logical indicating whether probit model for ordinal outcomes should be estimated |
parameter_index |
List containing integers for saving parameters |
est_parameter |
List of logicals indicating which parameter type should be estimated |
npar |
Number of parameters |
save_iter |
Vector indicating which iterations should be used |
verbose |
Logical indicating whether progress should be displayed |
parnames0 |
Optional vector of parameter names |
K |
Number of categories |
est_thresh |
Logical indicating whether thresholds should be estimated |
parm_summary |
Logical indicating whether a parameter summary table should be computed |
xtx_inv |
Matrix |
NR |
Integer |
ztz_list |
List containing design matrices for random effects |
u0_list |
List containing random effects |
nu0_list |
List with prior sample sizes |
S0_list |
List with prior guesses |
sigma2_0 |
Numeric |
y_int |
Integer vector |
minval |
Numeric |
maxval |
Numeric |
sd_proposal |
Numeric vector |
N |
Integer |
Z |
Matrix |
u |
Matrix containing random effects |
idcluster |
Integer vector |
onlyintercept |
Logical |
ncluster |
Integer |
mu1 |
Vector |
use_log |
Logical |
mu |
Vector |
sigma |
Numeric |
lower |
Vector |
upper |
Vector |
Details
Fits a linear mixed effects model y=\bm{X}\bm{beta}+
\bm{Z}\bm{u}+e
with MCMC sampling. In case of ordinal data,
the ordinal variable y
is replaced by an underlying latent normally
distributed variable y^\ast
and the residual variance is fixed to 1.
Value
List with following entries (selection)
sampled_values |
Sampled values |
par_summary |
Parameter summary |
References
Goldstein, H. (2011). Multilevel statistical models. New York: Wiley. doi:10.1002/9780470973394
Goldstein, H., Carpenter, J., Kenward, M., & Levin, K. (2009). Multilevel models with multivariate mixed response types. Statistical Modelling, 9(3), 173-197. doi:10.1177/1471082X0800900301
See Also
See also the MCMCglmm package for MCMC estimation and the lme4 package for maximum likelihood estimation.
Examples
## Not run:
#############################################################################
# EXAMPLE 1: Multilevel model continuous data
#############################################################################
library(lme4)
#*** simulate data
set.seed(9097)
# number of clusters and units within clusters
K <- 150
n <- 15
iccx <- .2
idcluster <- rep( 1:K, each=n )
w <- stats::rnorm( K )
x <- rep( stats::rnorm( K, sd=sqrt(iccx) ), each=n) +
stats::rnorm( n*K, sd=sqrt( 1 - iccx ))
X <- data.frame(int=1, "x"=x, xaggr=miceadds::gm(x, idcluster),
w=rep( w, each=n ) )
X <- as.matrix(X)
Sigma <- diag( c(2, .5 ) )
u <- MASS::mvrnorm( K, mu=c(0,0), Sigma=Sigma )
beta <- c( 0, .3, .7, 1 )
Z <- X[, c("int", "x") ]
ypred <- as.matrix(X) %*% beta + rowSums( Z * u[ idcluster, ] )
y <- ypred[,1] + stats::rnorm( n*K, sd=1 )
data <- as.data.frame(X)
data$idcluster <- idcluster
data$y <- y
#*** estimate mixed effects model with miceadds::ml_mcmc() function
formula <- y ~ x + miceadds::gm(x, idcluster) + w + ( 1 + x | idcluster)
mod1 <- miceadds::ml_mcmc( formula=formula, data=data)
plot(mod1)
summary(mod1)
#*** compare results with lme4 package
mod2 <- lme4::lmer(formula=formula, data=data)
summary(mod2)
#############################################################################
# EXAMPLE 2: Multilevel model for ordinal outcome
#############################################################################
#*** simulate data
set.seed(456)
# number of clusters and units within cluster
K <- 500
n <- 10
iccx <- .2
idcluster <- rep( 1:K, each=n )
w <- rnorm( K )
x <- rep( stats::rnorm( K, sd=sqrt(iccx)), each=n) +
stats::rnorm( n*K, sd=sqrt( 1 - iccx ))
X <- data.frame("int"=1, "x"=x, "xaggr"=miceadds::gm(x, idcluster),
w=rep( w, each=n ) )
X <- as.matrix(X)
u <- matrix( stats::rnorm(K, sd=sqrt(.5) ), ncol=1)
beta <- c( 0, .3, .7, 1 )
Z <- X[, c("int") ]
ypred <- as.matrix(X) %*% beta + Z * u[ idcluster, ]
y <- ypred[,1] + stats::rnorm( n*K, sd=1 )
data <- as.data.frame(X)
data$idcluster <- idcluster
alpha <- c(-Inf, -.4, 0, 1.7, Inf)
data$y <- cut( y, breaks=alpha, labels=FALSE ) - 1
#*** estimate model
formula <- y ~ miceadds::cwc(x, idcluster) + miceadds::gm(x,idcluster) + w + ( 1 | idcluster)
mod <- miceadds::ml_mcmc( formula=formula, data=data, iter=2000, burnin=500,
outcome="probit", inits_lme4=FALSE)
summary(mod)
plot(mod)
## End(Not run)