micombine.cor {miceadds} | R Documentation |
Inference for Correlations and Covariances for Multiply Imputed Datasets
Description
Statistical inference for correlations and covariances for multiply imputed datasets
Usage
micombine.cor(mi.res, variables=NULL, conf.level=0.95,
method="pearson", nested=FALSE, partial=NULL )
micombine.cov(mi.res, variables=NULL, conf.level=0.95,
nested=FALSE )
Arguments
mi.res |
Object of class |
variables |
Indices of variables for selection |
conf.level |
Confidence level |
method |
Method for calculating correlations. Must be one
of |
nested |
Logical indicating whether the input dataset stems from a nested multiple imputation. |
partial |
Formula object for computing partial correlations. The
terms which should be residualized are written in the formula
object |
Value
A data frame containing the coefficients (r
, cov
) and its
corresponding standard error (rse
, cov_se
),
fraction of missing information
(fmi
) and a t
value (t
).
The corresponding coefficients can also be obtained as matrices
by requesting attr(result,"r_matrix")
.
See Also
See stats::cor.test
for testing
correlation coefficients.
Examples
## Not run:
#############################################################################
# EXAMPLE 1: nhanes data | combination of correlation coefficients
#############################################################################
library(mice)
data(nhanes, package="mice")
set.seed(9090)
# nhanes data in one chain
imp.mi <- miceadds::mice.1chain( nhanes, burnin=5, iter=20, Nimp=4,
method=rep("norm", 4) )
# correlation coefficients of variables 4, 2 and 3 (indexed in nhanes data)
res <- miceadds::micombine.cor(mi.res=imp.mi, variables=c(4,2,3) )
## variable1 variable2 r rse fisher_r fisher_rse fmi t p
## 1 chl bmi 0.2458 0.2236 0.2510 0.2540 0.3246 0.9879 0.3232
## 2 chl hyp 0.2286 0.2152 0.2327 0.2413 0.2377 0.9643 0.3349
## 3 bmi hyp -0.0084 0.2198 -0.0084 0.2351 0.1904 -0.0358 0.9714
## lower95 upper95
## 1 -0.2421 0.6345
## 2 -0.2358 0.6080
## 3 -0.4376 0.4239
# extract matrix with correlations and its standard errors
attr(res, "r_matrix")
attr(res, "rse_matrix")
# inference for covariance
res2 <- miceadds::micombine.cov(mi.res=imp.mi, variables=c(4,2,3) )
# inference can also be conducted for non-imputed data
res3 <- miceadds::micombine.cov(mi.res=nhanes, variables=c(4,2,3) )
# partial correlation residualizing bmi and chl
res4 <- miceadds::micombine.cor(mi.res=imp.mi, variables=c("age","hyp" ),
partial=~bmi+chl )
res4
# alternatively, 'partial' can also be defined as c('age','hyp')
#############################################################################
# EXAMPLE 2: nhanes data | comparing different correlation coefficients
#############################################################################
library(psych)
library(mitools)
# imputing data
imp1 <- mice::mice( nhanes, method=rep("norm", 4 ) )
summary(imp1)
#*** Pearson correlation
res1 <- miceadds::micombine.cor(mi.res=imp1, variables=c(4,2) )
#*** Spearman rank correlation
res2 <- miceadds::micombine.cor(mi.res=imp1, variables=c(4,2), method="spearman")
#*** Kendalls tau
# test of computation of tau for first imputed dataset
dat1 <- mice::complete(imp1, action=1)
tau1 <- psych::corr.test(x=dat1[,c(4,2)], method="kendall")
tau1$r[1,2] # estimate
tau1$se # standard error
# results of Kendalls tau for all imputed datasets
res3 <- with( data=imp1,
expr=psych::corr.test( x=cbind( chl, bmi ), method="kendall") )
# extract estimates
betas <- lapply( res3$analyses, FUN=function(ll){ ll$r[1,2] } )
# extract variances
vars <- lapply( res3$analyses, FUN=function(ll){ (ll$se[1,2])^2 } )
# Rubin inference
tau_comb <- mitools::MIcombine( results=betas, variances=vars )
summary(tau_comb)
#############################################################################
# EXAMPLE 3: Inference for correlations for nested multiply imputed datasets
#############################################################################
library(BIFIEsurvey)
data(data.timss4, package="BIFIEsurvey" )
datlist <- data.timss4
# object of class nested.datlist
datlist <- miceadds::nested.datlist_create(datlist)
# inference for correlations
res2 <- miceadds::micombine.cor(mi.res=datlist, variables=c("lang", "migrant", "ASMMAT"))
## End(Not run)