mice.nmi {miceadds} | R Documentation |
Nested Multiple Imputation
Description
Performs nested multiple imputation (Rubin, 2003) for the functions
mice::mice
and mice.1chain
.
The function mice.nmi
generates an object of class mids.nmi
.
Usage
mice.nmi(datlist, type="mice", ...)
## S3 method for class 'mids.nmi'
summary(object, ...)
## S3 method for class 'mids.nmi'
print(x, ...)
Arguments
datlist |
List of datasets for which nested multiple imputation should be applied |
type |
Imputation model: |
... |
Arguments to be passed to |
object |
Object of class |
x |
Object of class |
Value
Object of class mids.nmi
with entries
imp |
List of nested multiply imputed datasets whose entries
are of class |
Nimp |
Number of between and within imputations. |
References
Rubin, D. B. (2003). Nested multiple imputation of NMES via partially incompatible MCMC. Statistica Neerlandica, 57(1), 3-18. doi:10.1111/1467-9574.00217
See Also
For imputation models see mice::mice
and mice.1chain
.
Functions for analyses of nested multiply imputed datasets:
complete.mids.nmi
, with.mids.nmi
,
pool.mids.nmi
Examples
## Not run:
#############################################################################
# EXAMPLE 1: Nested multiple imputation for TIMSS data
#############################################################################
library(BIFIEsurvey)
data(data.timss2, package="BIFIEsurvey" )
datlist <- data.timss2
# list of 5 datasets containing 5 plausible values
#** define imputation method and predictor matrix
data <- datlist[[1]]
V <- ncol(data)
# variables
vars <- colnames(data)
# variables not used for imputation
vars_unused <- miceadds::scan.vec("IDSTUD TOTWGT JKZONE JKREP" )
#- define imputation method
impMethod <- rep("norm", V )
names(impMethod) <- vars
impMethod[ vars_unused ] <- ""
#- define predictor matrix
predM <- matrix( 1, V, V )
colnames(predM) <- rownames(predM) <- vars
diag(predM) <- 0
predM[, vars_unused ] <- 0
#***************
# (1) nested multiple imputation using mice
imp1 <- miceadds::mice.nmi( datlist, method=impMethod, predictorMatrix=predM,
m=4, maxit=3 )
summary(imp1)
#***************
# (2) nested multiple imputation using mice.1chain
imp2 <- miceadds::mice.nmi( datlist, method=impMethod, predictorMatrix=predM,
Nimp=4, burnin=10,iter=22, type="mice.1chain")
summary(imp2)
## End(Not run)