mice.1chain {miceadds} | R Documentation |
Multiple Imputation by Chained Equations using One Chain
Description
This function modifies the mice::mice
function to
multiply impute a dataset using a long chain instead of multiple parallel chains
which is the approach employed in mice::mice
.
Usage
mice.1chain(data, burnin=10, iter=20, Nimp=10, method=NULL,
where=NULL, visitSequence=NULL, blots=NULL, post=NULL,
defaultMethod=c("pmm", "logreg", "polyreg", "polr"),
printFlag=TRUE, seed=NA, data.init=NULL, ...)
## S3 method for class 'mids.1chain'
summary(object,...)
## S3 method for class 'mids.1chain'
print(x, ...)
## S3 method for class 'mids.1chain'
plot(x, plot.burnin=FALSE, ask=TRUE, ...)
Arguments
data |
Numeric matrix |
burnin |
Number of burn-in iterations |
iter |
Total number of imputations (larger than |
Nimp |
Number of imputations |
method |
See |
where |
See |
visitSequence |
See |
blots |
See |
post |
See |
defaultMethod |
See |
printFlag |
See |
seed |
See |
data.init |
See |
object |
Object of class |
x |
Object of class |
plot.burnin |
An optional logical indicating whether burnin iterations should be included in the traceplot |
ask |
An optional logical indicating a user request for viewing next plot |
... |
See |
Value
A list with following entries
midsobj |
Objects of class |
datlist |
List of multiply imputed datasets |
datalong |
Original and imputed dataset in the long format |
implist |
List of |
chainMpar |
Trace of means for all imputed variables |
chainVarpar |
Trace of variances for all imputed variables |
Note
Multiple imputation can also be used for determining causal effects (see Example 3; Schafer & Kang, 2008).
See Also
Examples
## Not run:
#############################################################################
# EXAMPLE 1: One chain nhanes data
#############################################################################
library(mice)
data(nhanes, package="mice")
set.seed(9090)
# nhanes data in one chain
imp.mi1 <- miceadds::mice.1chain( nhanes, burnin=5, iter=40, Nimp=4,
method=rep("norm", 4 ) )
summary(imp.mi1) # summary of mids.1chain
plot( imp.mi1 ) # trace plot excluding burnin iterations
plot( imp.mi1, plot.burnin=TRUE ) # trace plot including burnin iterations
# select mids object
imp.mi2 <- imp.mi1$midsobj
summary(imp.mi2) # summary of mids
# apply mice functionality lm.mids
mod <- with( imp.mi2, stats::lm( bmi ~ age ) )
summary( mice::pool( mod ) )
#############################################################################
# EXAMPLE 2: One chain (mixed data: numeric and factor)
#############################################################################
library(mice)
data(nhanes2, package="mice")
set.seed(9090)
# nhanes2 data in one chain
imp.mi1 <- miceadds::mice.1chain( nhanes2, burnin=5, iter=25, Nimp=5 )
# summary
summary( imp.mi1$midsobj )
#############################################################################
# EXAMPLE 3: Multiple imputation with counterfactuals for estimating
# causal effects (average treatment effects)
# Schafer, J. L., & Kang, J. (2008). Average causal effects from nonrandomized
# studies: a practical guide and simulated example.
# Psychological Methods, 13, 279-313.
#############################################################################
data(data.ma01)
dat <- data.ma01[, 4:11]
# define counterfactuals for reading score for students with and
# without migrational background
dat$read.migrant1 <- ifelse( paste(dat$migrant)==1, dat$read, NA )
dat$read.migrant0 <- ifelse( paste(dat$migrant)==0, dat$read, NA )
# define imputation method
impmethod <- rep("pls", ncol(dat) )
names(impmethod) <- colnames(dat)
# define predictor matrix
pm <- 4*(1 - diag( ncol(dat) ) ) # 4 - use all interactions
rownames(pm) <- colnames(pm) <- colnames(dat)
pm[ c( "read.migrant0", "read.migrant1"), ] <- 0
# do not use counterfactuals for 'read' as a predictor
pm[, "read.migrant0"] <- 0
pm[, "read.migrant1"] <- 0
# define control variables for creation of counterfactuals
pm[ c( "read.migrant0", "read.migrant1"), c("hisei","paredu","female","books") ] <- 4
## > pm
## math read migrant books hisei paredu female urban read.migrant1 read.migrant0
## math 0 4 4 4 4 4 4 4 0 0
## read 4 0 4 4 4 4 4 4 0 0
## migrant 4 4 0 4 4 4 4 4 0 0
## books 4 4 4 0 4 4 4 4 0 0
## hisei 4 4 4 4 0 4 4 4 0 0
## paredu 4 4 4 4 4 0 4 4 0 0
## female 4 4 4 4 4 4 0 4 0 0
## urban 4 4 4 4 4 4 4 0 0 0
## read.migrant1 0 0 0 4 4 4 4 0 0 0
## read.migrant0 0 0 0 4 4 4 4 0 0 0
# imputation using mice function and PLS imputation with
# predictive mean matching method 'pmm6'
imp <- mice::mice( dat, method=impmethod, predictorMatrix=pm,
maxit=4, m=5, pls.impMethod="pmm5" )
#*** Model 1: Raw score difference
mod1 <- with( imp, stats::lm( read ~ migrant ) )
smod1 <- summary( mice::pool(mod1) )
## > smod1
## est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda
## (Intercept) 510.21 1.460 349.37 358.26 0 507.34 513.09 NA 0.1053 0.1004
## migrant -43.38 3.757 -11.55 62.78 0 -50.89 -35.87 404 0.2726 0.2498
#*** Model 2: ANCOVA - regression adjustment
mod2 <- with( imp, stats::lm( read ~ migrant + hisei + paredu + female + books) )
smod2 <- summary( mice::pool(mod2) )
## > smod2
## est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda
## (Intercept) 385.1506 4.12027 93.477 3778.66 0.000e+00 377.0725 393.229 NA 0.008678 0.008153
## migrant -29.1899 3.30263 -8.838 87.46 9.237e-14 -35.7537 -22.626 404 0.228363 0.210917
## hisei 0.9401 0.08749 10.745 160.51 0.000e+00 0.7673 1.113 733 0.164478 0.154132
## paredu 2.9305 0.79081 3.706 41.34 6.190e-04 1.3338 4.527 672 0.339961 0.308780
## female 38.1719 2.26499 16.853 1531.31 0.000e+00 33.7291 42.615 0 0.041093 0.039841
## books 14.0113 0.88953 15.751 154.71 0.000e+00 12.2541 15.768 423 0.167812 0.157123
#*** Model 3a: Estimation using counterfactuals
mod3a <- with( imp, stats::lm( I( read.migrant1 - read.migrant0) ~ 1 ) )
smod3a <- summary( mice::pool(mod3a) )
## > smod3a
## est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda
## (Intercept) -22.54 7.498 -3.007 4.315 0.03602 -42.77 -2.311 NA 0.9652 0.9521
#*** Model 3b: Like Model 3a but using student weights
mod3b <- with( imp, stats::lm( I( read.migrant1 - read.migrant0) ~ 1,
weights=data.ma01$studwgt ) )
smod3b <- summary( mice::pool(mod3b) )
## > smod3b
## est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda
## (Intercept) -21.88 7.605 -2.877 4.3 0.04142 -42.43 -1.336 NA 0.9662 0.9535
#*** Model 4: Average treatment effect on the treated (ATT, migrants)
# and non-treated (ATN, non-migrants)
mod4 <- with( imp, stats::lm( I( read.migrant1 - read.migrant0) ~ 0 + as.factor( migrant) ) )
smod4 <- summary( mice::pool(mod4) )
## > smod4
## est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda
## as.factor(migrant)0 -23.13 8.664 -2.669 4.27 0.052182 -46.59 0.3416 NA 0.9682 0.9562
## as.factor(migrant)1 -19.95 5.198 -3.837 19.57 0.001063 -30.81 -9.0884 NA 0.4988 0.4501
# ATN=-23.13 and ATT=-19.95
## End(Not run)