mi.anova {miceadds} | R Documentation |
Analysis of Variance for Multiply Imputed Data Sets (Using the
Statistic)
Description
This function combines values from analysis of variance using
the
statistic which is based on combining
statistics
(see Allison, 2001, Grund, Luedtke & Robitzsch, 2016;
micombine.F
, micombine.chisquare
).
Usage
mi.anova(mi.res, formula, type=2)
Arguments
mi.res |
Object of class |
formula |
Formula for |
type |
Type for ANOVA calculations. For |
Value
A list with the following entries:
r.squared |
Explained variance |
anova.table |
ANOVA table |
References
Allison, P. D. (2002). Missing data. Newbury Park, CA: Sage.
Grund, S., Luedtke, O., & Robitzsch, A. (2016). Pooling ANOVA results from multiply imputed datasets: A simulation study. Methodology, 12(3), 75-88. doi:10.1027/1614-2241/a000111
See Also
This function uses micombine.F
and
micombine.chisquare
.
See mice::pool.compare
and
mitml::testModels
for model
comparisons based on the statistic. The
statistic
is also included in
mitml::testConstraints
.
The ,
and
statistics are also included in the
mice package in functions
mice::D1
,
mice::D2
and mice::D3
.
Examples
## Not run:
#############################################################################
# EXAMPLE 1: nhanes2 data | two-way ANOVA
#############################################################################
library(mice)
library(car)
data(nhanes2, package="mice")
set.seed(9090)
# nhanes data in one chain and 8 imputed datasets
mi.res <- miceadds::mice.1chain( nhanes2, burnin=4, iter=20, Nimp=8 )
# 2-way analysis of variance (type 2)
an2a <- miceadds::mi.anova(mi.res=mi.res, formula="bmi ~ age * chl" )
# test of interaction effects using mitml::testModels()
mod1 <- with( mi.res, stats::lm( bmi ~ age*chl ) )
mod0 <- with( mi.res, stats::lm( bmi ~ age+chl ) )
mitml::testModels(model=mod1$analyses, null.model=mod0$analyses, method="D1")
mitml::testModels(model=mod1$analyses, null.model=mod0$analyses, method="D2")
# 2-way analysis of variance (type 3)
an2b <- miceadds::mi.anova(mi.res=mi.res, formula="bmi ~ age * chl", type=3)
#****** analysis based on first imputed dataset
# extract first dataset
dat1 <- mice::complete( mi.res$mids )
# type 2 ANOVA
lm1 <- stats::lm( bmi ~ age * chl, data=dat1 )
summary( stats::aov( lm1 ) )
# type 3 ANOVA
lm2 <- stats::lm( bmi ~ age * chl, data=dat1, contrasts=list(age=contr.sum))
car::Anova(mod=lm2, type=3)
## End(Not run)