lmer_vcov {miceadds} | R Documentation |
Statistical Inference for Fixed and Random Structure for Fitted Models in lme4
Description
The function lmer_vcov
conducts statistical inference for
fixed coefficients and standard deviations
and correlations of random effects structure of models fitted in the
lme4 package.
The function lmer_pool
applies the Rubin formula for inference
for fitted lme4 models for multiply imputed datasets.
Usage
lmer_vcov(object, level=.95, use_reml=FALSE, ...)
## S3 method for class 'lmer_vcov'
summary(object, digits=4, file=NULL, ...)
## S3 method for class 'lmer_vcov'
coef(object, ...)
## S3 method for class 'lmer_vcov'
vcov(object, ...)
lmer_vcov2(object, level=.95, ...)
lmer_pool( models, level=.95, ...)
## S3 method for class 'lmer_pool'
summary(object, digits=4, file=NULL, ...)
lmer_pool2( models, level=.95, ...)
Arguments
object |
Fitted object in lme4 |
level |
Confidence level |
use_reml |
Logical indicating whether REML estimates should be used for variance components (if provided) |
digits |
Number of digits used for rounding in summary |
file |
Optional file name for sinking output |
models |
List of models fitted in lme4 for a multiply imputed dataset |
... |
Further arguments to be passed |
Value
List with several entries:
par_summary |
Parameter summary |
coef |
Estimated parameters |
vcov |
Covariance matrix of estimates |
... |
Further values |
Author(s)
Function originally from Ben Bolker, http://rpubs.com/bbolker/varwald
See Also
lme4::lmer
,
mitml::testEstimates
Examples
## Not run:
#############################################################################
# EXAMPLE 1: Single model fitted in lme4
#############################################################################
library(lme4)
data(data.ma01, package="miceadds")
dat <- na.omit(data.ma01)
#* fit multilevel model
formula <- math ~ hisei + miceadds::gm( books, idschool ) + ( 1 + books | idschool )
mod1 <- lme4::lmer( formula, data=dat, REML=FALSE)
summary(mod1)
#* statistical inference
res1 <- miceadds::lmer_vcov( mod1 )
summary(res1)
coef(res1)
vcov(res1)
#############################################################################
# EXAMPLE 2: lme4 model for multiply imputed dataset
#############################################################################
library(lme4)
data(data.ma02, package="miceadds")
datlist <- miceadds::datlist_create(data.ma02)
#** fit lme4 model for all imputed datasets
formula <- math ~ hisei + miceadds::gm( books, idschool ) + ( 1 | idschool )
models <- list()
M <- length(datlist)
for (mm in 1:M){
models[[mm]] <- lme4::lmer( formula, data=datlist[[mm]], REML=FALSE)
}
#** statistical inference
res1 <- miceadds::lmer_pool(models)
summary(res1)
## End(Not run)