Fast Imputations Using 'Rcpp' and 'Armadillo'


[Up] [Top]

Documentation for package ‘miceFast’ version 0.8.2

Help Pages

miceFast-package miceFast package for fast multiple imputations.
air_miss airquality dataset with additional variables
compare_imp Comparing imputations and original data distributions
corrData Class '"Rcpp_corrData"'
fill_NA 'fill_NA' function for the imputations purpose.
fill_NA.data.frame 'fill_NA' function for the imputations purpose.
fill_NA.data.table 'fill_NA' function for the imputations purpose.
fill_NA.matrix 'fill_NA' function for the imputations purpose.
fill_NA_N 'fill_NA_N' function for the multiple imputations purpose
fill_NA_N.data.frame 'fill_NA_N' function for the multiple imputations purpose
fill_NA_N.data.table 'fill_NA_N' function for the multiple imputations purpose
fill_NA_N.matrix 'fill_NA_N' function for the multiple imputations purpose
miceFast Class '"Rcpp_miceFast"'
naive_fill_NA 'naive_fill_NA' function for the simple and automatic imputation
naive_fill_NA.data.frame 'naive_fill_NA' function for the simple and automatic imputation
naive_fill_NA.data.table 'naive_fill_NA' function for the simple and automatic imputation
naive_fill_NA.matrix 'naive_fill_NA' function for the simple and automatic imputation
neibo Finding in random manner one of the k closets points in a certain vector for each value in a second vector
Rcpp_corrData-class Class '"Rcpp_corrData"'
Rcpp_miceFast-class Class '"Rcpp_miceFast"'
upset_NA upset plot for NA values
VIF 'VIF' function for assessing VIF.
VIF.data.frame 'VIF' function for assessing VIF.
VIF.data.table 'VIF' function for assessing VIF.
VIF.matrix 'VIF' function for assessing VIF.