mice.impute.norm {mice} | R Documentation |
Imputation by Bayesian linear regression
Description
Calculates imputations for univariate missing data by Bayesian linear regression, also known as the normal model.
Usage
mice.impute.norm(y, ry, x, wy = NULL, ...)
Arguments
y |
Vector to be imputed |
ry |
Logical vector of length |
x |
Numeric design matrix with |
wy |
Logical vector of length |
... |
Other named arguments. |
Details
Imputation of y
by the normal model by the method defined by
Rubin (1987, p. 167). The procedure is as follows:
Calculate the cross-product matrix
.
Calculate
, with some small ridge parameter
.
Calculate regression weights
Draw a random variable
with
.
Calculate
Draw
independent
variates in vector
.
Calculate
by Cholesky decomposition.
Calculate
.
Draw
independent
variates in vector
.
Calculate the
values
.
Using mice.impute.norm
for all columns emulates Schafer's NORM method (Schafer, 1997).
Value
Vector with imputed data, same type as y
, and of length
sum(wy)
Author(s)
Stef van Buuren, Karin Groothuis-Oudshoorn
References
Rubin, D.B (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley & Sons.
Schafer, J.L. (1997). Analysis of incomplete multivariate data. London: Chapman & Hall.
See Also
Other univariate imputation functions:
mice.impute.cart()
,
mice.impute.lasso.logreg()
,
mice.impute.lasso.norm()
,
mice.impute.lasso.select.logreg()
,
mice.impute.lasso.select.norm()
,
mice.impute.lda()
,
mice.impute.logreg.boot()
,
mice.impute.logreg()
,
mice.impute.mean()
,
mice.impute.midastouch()
,
mice.impute.mnar.logreg()
,
mice.impute.mpmm()
,
mice.impute.norm.boot()
,
mice.impute.norm.nob()
,
mice.impute.norm.predict()
,
mice.impute.pmm()
,
mice.impute.polr()
,
mice.impute.polyreg()
,
mice.impute.quadratic()
,
mice.impute.rf()
,
mice.impute.ri()