| mice.impute.norm.boot {mice} | R Documentation |
Imputation by linear regression, bootstrap method
Description
Imputes univariate missing data using linear regression with bootstrap
Usage
mice.impute.norm.boot(y, ry, x, wy = NULL, ...)
Arguments
y |
Vector to be imputed |
ry |
Logical vector of length |
x |
Numeric design matrix with |
wy |
Logical vector of length |
... |
Other named arguments. |
Details
Draws a bootstrap sample from x[ry,] and y[ry], calculates
regression weights and imputes with normal residuals.
Value
Vector with imputed data, same type as y, and of length
sum(wy)
Author(s)
Gerko Vink, Stef van Buuren, 2018
References
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice:
Multivariate Imputation by Chained Equations in R. Journal of
Statistical Software, 45(3), 1-67.
doi:10.18637/jss.v045.i03
See Also
Other univariate imputation functions:
mice.impute.cart(),
mice.impute.lasso.logreg(),
mice.impute.lasso.norm(),
mice.impute.lasso.select.logreg(),
mice.impute.lasso.select.norm(),
mice.impute.lda(),
mice.impute.logreg.boot(),
mice.impute.logreg(),
mice.impute.mean(),
mice.impute.midastouch(),
mice.impute.mnar.logreg(),
mice.impute.mpmm(),
mice.impute.norm.nob(),
mice.impute.norm.predict(),
mice.impute.norm(),
mice.impute.pmm(),
mice.impute.polr(),
mice.impute.polyreg(),
mice.impute.quadratic(),
mice.impute.rf(),
mice.impute.ri()